論文の概要: Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks
in Continual Learning
- arxiv url: http://arxiv.org/abs/2303.09483v1
- Date: Thu, 16 Mar 2023 17:00:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-17 14:36:15.164997
- Title: Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks
in Continual Learning
- Title(参考訳): 連続学習における補助ネットワークによる安定性・塑性トレードオフの達成
- Authors: Sanghwan Kim, Lorenzo Noci, Antonio Orvieto and Thomas Hofmann
- Abstract要約: 本稿では、ニューラルネットワークに現在の課題を学習する能力を持たせるために、補助的ネットワーク継続学習(ANCL)を提案する。
ANCLは、主に安定性に焦点を当てた継続的な学習モデルに可塑性を促進する補助ネットワークを付加する。
より具体的には、提案するフレームワークは、可塑性と安定性を自然に補間する正規化器として実現されている。
- 参考スコア(独自算出の注目度): 23.15206507040553
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In contrast to the natural capabilities of humans to learn new tasks in a
sequential fashion, neural networks are known to suffer from catastrophic
forgetting, where the model's performances on old tasks drop dramatically after
being optimized for a new task. Since then, the continual learning (CL)
community has proposed several solutions aiming to equip the neural network
with the ability to learn the current task (plasticity) while still achieving
high accuracy on the previous tasks (stability). Despite remarkable
improvements, the plasticity-stability trade-off is still far from being solved
and its underlying mechanism is poorly understood. In this work, we propose
Auxiliary Network Continual Learning (ANCL), a novel method that applies an
additional auxiliary network which promotes plasticity to the continually
learned model which mainly focuses on stability. More concretely, the proposed
framework materializes in a regularizer that naturally interpolates between
plasticity and stability, surpassing strong baselines on task incremental and
class incremental scenarios. Through extensive analyses on ANCL solutions, we
identify some essential principles beneath the stability-plasticity trade-off.
- Abstract(参考訳): 新しいタスクをシーケンシャルに学習する人間の自然な能力とは対照的に、ニューラルネットワークは壊滅的な忘れに苦しむことが知られており、古いタスクにおけるモデルのパフォーマンスは、新しいタスクに最適化された後に劇的に低下する。
それ以来、継続学習(CL)コミュニティは、ニューラルネットワークに現在のタスク(塑性)を学習する能力を持たせつつ、以前のタスク(安定性)を高い精度で達成することを目的とした、いくつかのソリューションを提案してきた。
顕著な改善にもかかわらず、可塑性-安定性のトレードオフはまだ解決には程遠い。
本研究では,主に安定性を重視した連続学習モデルに可塑性を促進させる補助的ネットワークを新たに導入する,補助的ネットワーク継続学習(ANCL)を提案する。
より具体的には、提案したフレームワークは、可塑性と安定性を自然に補間し、タスクインクリメンタルとクラスインクリメンタルシナリオの強いベースラインを超えたレギュレータとして実現されている。
ancl溶液の広範な分析を通じて,安定性・可塑性トレードオフ下での重要な原理を明らかにした。
関連論文リスト
- Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal [54.93261535899478]
強化学習のロボット制御のような現実世界の応用では、タスクが変化し、新しいタスクが順次発生する。
この状況は、タスクの変更に適応し、獲得した知識を保持するエージェントを訓練する上で、可塑性-安定トレードオフという新たな課題を生じさせる。
本研究では,連続拡散器(Continuous diffuser,CoD)と呼ばれるリハーサルに基づく連続拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-09-04T08:21:47Z) - Auxiliary Classifiers Improve Stability and Efficiency in Continual Learning [13.309853617922824]
連続学習における中間的ニューラルネットワーク層の安定性について検討する。
補助分類器(AC)はこの安定性を利用して性能を向上させることができることを示す。
以上の結果から,ACは継続学習モデルの拡張に有望な道筋であることを示唆した。
論文 参考訳(メタデータ) (2024-03-12T08:33:26Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
可塑性の喪失は複数の独立したメカニズムに分解できることを示す。
種々の非定常学習タスクにおいて, 層正規化と重み劣化の組み合わせは, 可塑性維持に極めて有効であることを示す。
論文 参考訳(メタデータ) (2024-02-29T00:02:33Z) - Learning a Low-Rank Feature Representation: Achieving Better Trade-Off
between Stability and Plasticity in Continual Learning [20.15493383736196]
連続学習では、ネットワークは一連のタスクでトレーニングされた場合、安定性と可塑性の間のトレードオフに直面します。
そこで我々は, LRFRと呼ばれる新しいトレーニングアルゴリズムを提案し, 安定性を犠牲にすることなく, 可塑性を増強する。
CIFAR-100とTinyImageNetを連続学習のベンチマークデータセットとして使用することにより、提案手法は一貫して最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-12-14T08:34:11Z) - Keep Moving: identifying task-relevant subspaces to maximise plasticity for newly learned tasks [0.22499166814992438]
継続学習アルゴリズムは、事前情報を保持しながら、新しい知識を獲得しようとする。
これらのアルゴリズムは、しばしば安定性を強調し、新しいタスクを学習する際のネットワーク更新を制限する。
しかし、すべては有害か?
本稿では,ニューラルネットワークの活性化空間を2つの部分空間に分解できることを提案する。
論文 参考訳(メタデータ) (2023-10-07T08:54:43Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
継続的な学習は、現実世界に強い適応性を持つ人工知能を強化することを目的としている。
既存の進歩は主に、破滅的な忘れを克服するために記憶安定性を維持することに焦点を当てている。
本稿では,学習の可塑性を改善するため,パラメータ分布の古い記憶を適切に減衰させる汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T02:43:58Z) - On the Stability-Plasticity Dilemma of Class-Incremental Learning [50.863180812727244]
クラス増分学習の第一の目的は、安定性と可塑性のバランスをとることである。
本稿では,近年のクラス増分学習アルゴリズムが,安定性と塑性のトレードオフにいかに効果的かを明らかにすることを目的とする。
論文 参考訳(メタデータ) (2023-04-04T09:34:14Z) - New Insights for the Stability-Plasticity Dilemma in Online Continual
Learning [21.664470275289407]
マルチスケール特徴適応ネットワーク(MuFAN)というオンライン連続学習フレームワークを提案する。
MuFANはSVHN、CIFAR100、miniImageNet、CORe50データセット上で、最先端の継続的な学習方法よりも優れている。
論文 参考訳(メタデータ) (2023-02-17T07:43:59Z) - Balancing Stability and Plasticity through Advanced Null Space in
Continual Learning [77.94570903726856]
我々は,従来のタスクの古いデータを格納することなく,安定性と可塑性のバランスをとるために,新しい連続学習手法Advanced Null Space(AdNS)を提案する。
また,現在のタスクの性能向上を図るため,タスク内蒸留を簡便かつ効果的に行う方法を提案する。
実験結果から,提案手法は最先端の連続学習手法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2022-07-25T11:04:22Z) - Towards Better Plasticity-Stability Trade-off in Incremental Learning: A
simple Linear Connector [8.13916229438606]
塑性安定性ジレンマはインクリメンタルラーニングの主要な問題である。
本研究では,従来のタスクに対するヌルスペースプロジェクションと,現在のタスクに対する単純なSGDの2つの独立最適化されたネットワークの単純な平均化が,すでに学習した知識の保存と,新しいタスクの学習に十分な柔軟性を付与することとの有意義なバランスを達成可能であることを示す。
論文 参考訳(メタデータ) (2021-10-15T07:37:20Z) - Understanding the Role of Training Regimes in Continual Learning [51.32945003239048]
破滅的な忘れは、ニューラルネットワークのトレーニングに影響を与え、複数のタスクを逐次学習する能力を制限する。
本研究では,タスクの局所的なミニマを拡大するトレーニング体制の形成に及ぼすドロップアウト,学習速度の低下,バッチサイズの影響について検討した。
論文 参考訳(メタデータ) (2020-06-12T06:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。