論文の概要: Continual Learning in Vision-Language Models via Aligned Model Merging
- arxiv url: http://arxiv.org/abs/2506.03189v1
- Date: Fri, 30 May 2025 20:52:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:13.926622
- Title: Continual Learning in Vision-Language Models via Aligned Model Merging
- Title(参考訳): 適応モデルマージによる視覚言語モデルの連続学習
- Authors: Ghada Sokar, Gintare Karolina Dziugaite, Anurag Arnab, Ahmet Iscen, Pablo Samuel Castro, Cordelia Schmid,
- Abstract要約: 塑性を保ちながら安定性を維持するために,モデルマージに基づく新しい視点を提案する。
マージプロセスの有効性を最大化するために,従来のものと一致した重みの学習を促進するシンプルなメカニズムを提案する。
- 参考スコア(独自算出の注目度): 84.47520899851557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual learning is conventionally tackled through sequential fine-tuning, a process that, while enabling adaptation, inherently favors plasticity over the stability needed to retain prior knowledge. While existing approaches attempt to mitigate catastrophic forgetting, a bias towards recent tasks persists as they build upon this sequential nature. In this work we present a new perspective based on model merging to maintain stability while still retaining plasticity. Rather than just sequentially updating the model weights, we propose merging newly trained task parameters with previously learned ones, promoting a better balance. To maximize the effectiveness of the merging process, we propose a simple mechanism that promotes learning aligned weights with previous ones, thereby avoiding interference when merging. We evaluate this approach on large Vision-Language Models (VLMs), and demonstrate its effectiveness in reducing forgetting, increasing robustness to various task orders and similarities, and improving generalization.
- Abstract(参考訳): 継続的学習は、逐次微調整(Sequence fine-tuning)によって取り組まれるが、適応が可能である一方で、従来の知識を維持するために必要な安定性よりも、本質的に可塑性を優先するプロセスである。
既存のアプローチは破滅的な忘れを緩和しようとするが、最近のタスクに対するバイアスは、このシーケンシャルな性質の上に構築されている。
本研究は, 塑性を維持しながら安定性を維持するため, モデルマージに基づく新しい視点を示す。
モデルの重みを逐次更新するのではなく、以前に学習したパラメータと新たに訓練したタスクパラメータをマージし、バランスを改善することを提案する。
マージプロセスの有効性を最大化するために,従来のものと一致した重みの学習を促進するシンプルなメカニズムを提案し,マージ時の干渉を回避する。
本稿では,大規模な視覚言語モデル (VLM) 上でのこのアプローチを評価し,その有効性を示すとともに,忘れることの低減,タスクの順序や類似性に対する堅牢性の向上,一般化の向上について述べる。
関連論文リスト
- BECAME: BayEsian Continual Learning with Adaptive Model MErging [21.642774366793997]
BECAMEという2段階のフレームワークを導入し、勾配予測と適応的マージの専門知識を相乗化する。
我々のアプローチは、最先端のCLメソッドと既存のマージ戦略より優れています。
論文 参考訳(メタデータ) (2025-04-03T15:07:28Z) - Neural Networks Remember More: The Power of Parameter Isolation and Combination [3.2430260063115233]
破滅的な忘れは、事前訓練された言語モデルにとって広範囲にわたる問題である。
この問題を解決するための鍵は、モデルの可塑性と安定性の間のトレードオフを見つけることである。
モデル安定性と塑性のバランスをとるための新しい手法を提案する。
論文 参考訳(メタデータ) (2025-02-16T02:58:57Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
複数の先行推定の正則化効果を統合する新たな学習目標を提案する。
提案手法は, 変分CL法より優れたカタストロフィックフォーミングを効果的に緩和する。
論文 参考訳(メタデータ) (2024-10-10T10:58:41Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks
in Continual Learning [23.15206507040553]
本稿では、ニューラルネットワークに現在の課題を学習する能力を持たせるために、補助的ネットワーク継続学習(ANCL)を提案する。
ANCLは、主に安定性に焦点を当てた継続的な学習モデルに可塑性を促進する補助ネットワークを付加する。
より具体的には、提案するフレームワークは、可塑性と安定性を自然に補間する正規化器として実現されている。
論文 参考訳(メタデータ) (2023-03-16T17:00:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。