Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks
in Continual Learning
- URL: http://arxiv.org/abs/2303.09483v3
- Date: Fri, 31 Mar 2023 17:58:40 GMT
- Title: Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks
in Continual Learning
- Authors: Sanghwan Kim, Lorenzo Noci, Antonio Orvieto and Thomas Hofmann
- Abstract summary: We propose Auxiliary Network Continual Learning (ANCL) to equip the neural network with the ability to learn the current task.
ANCL applies an additional auxiliary network which promotes plasticity to the continually learned model which mainly focuses on stability.
More concretely, the proposed framework materializes in a regularizer that naturally interpolates between plasticity and stability.
- Score: 23.15206507040553
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In contrast to the natural capabilities of humans to learn new tasks in a
sequential fashion, neural networks are known to suffer from catastrophic
forgetting, where the model's performances on old tasks drop dramatically after
being optimized for a new task. Since then, the continual learning (CL)
community has proposed several solutions aiming to equip the neural network
with the ability to learn the current task (plasticity) while still achieving
high accuracy on the previous tasks (stability). Despite remarkable
improvements, the plasticity-stability trade-off is still far from being solved
and its underlying mechanism is poorly understood. In this work, we propose
Auxiliary Network Continual Learning (ANCL), a novel method that applies an
additional auxiliary network which promotes plasticity to the continually
learned model which mainly focuses on stability. More concretely, the proposed
framework materializes in a regularizer that naturally interpolates between
plasticity and stability, surpassing strong baselines on task incremental and
class incremental scenarios. Through extensive analyses on ANCL solutions, we
identify some essential principles beneath the stability-plasticity trade-off.
Related papers
- Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal [54.93261535899478]
In real-world applications, such as robotic control of reinforcement learning, the tasks are changing, and new tasks arise in a sequential order.
This situation poses the new challenge of plasticity-stability trade-off for training an agent who can adapt to task changes and retain acquired knowledge.
We propose a rehearsal-based continual diffusion model, called Continual diffuser (CoD), to endow the diffuser with the capabilities of quick adaptation (plasticity) and lasting retention (stability)
arXiv Detail & Related papers (2024-09-04T08:21:47Z) - Auxiliary Classifiers Improve Stability and Efficiency in Continual Learning [13.309853617922824]
We investigate the stability of intermediate neural network layers during continual learning.
We show auxiliary classifiers (ACs) can leverage this stability to improve performance.
Our findings suggest that ACs offer a promising avenue for enhancing continual learning models.
arXiv Detail & Related papers (2024-03-12T08:33:26Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
We show that loss of plasticity can be decomposed into multiple independent mechanisms.
We show that a combination of layer normalization and weight decay is highly effective at maintaining plasticity in a variety of synthetic nonstationary learning tasks.
arXiv Detail & Related papers (2024-02-29T00:02:33Z) - Learning a Low-Rank Feature Representation: Achieving Better Trade-Off
between Stability and Plasticity in Continual Learning [20.15493383736196]
In continual learning, networks confront a trade-off between stability and plasticity when trained on a sequence of tasks.
We propose a novel training algorithm called LRFR to bolster plasticity without sacrificing stability.
Using CIFAR-100 and TinyImageNet as benchmark datasets for continual learning, the proposed approach consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-14T08:34:11Z) - Keep Moving: identifying task-relevant subspaces to maximise plasticity for newly learned tasks [0.22499166814992438]
Continual learning algorithms strive to acquire new knowledge while preserving prior information.
Often, these algorithms emphasise stability and restrict network updates upon learning new tasks.
But is all change detrimental?
We propose that activation spaces in neural networks can be decomposed into two subspaces.
arXiv Detail & Related papers (2023-10-07T08:54:43Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
Continual learning aims to empower artificial intelligence with strong adaptability to the real world.
Existing advances mainly focus on preserving memory stability to overcome catastrophic forgetting.
We propose a generic approach that appropriately attenuates old memories in parameter distributions to improve learning plasticity.
arXiv Detail & Related papers (2023-08-29T02:43:58Z) - On the Stability-Plasticity Dilemma of Class-Incremental Learning [50.863180812727244]
A primary goal of class-incremental learning is to strike a balance between stability and plasticity.
This paper aims to shed light on how effectively recent class-incremental learning algorithms address the stability-plasticity trade-off.
arXiv Detail & Related papers (2023-04-04T09:34:14Z) - New Insights for the Stability-Plasticity Dilemma in Online Continual
Learning [21.664470275289407]
We propose an online continual learning framework named multi-scale feature adaptation network (MuFAN)
MuFAN outperforms other state-of-the-art continual learning methods on the SVHN, CIFAR100, miniImageNet, and CORe50 datasets.
arXiv Detail & Related papers (2023-02-17T07:43:59Z) - Balancing Stability and Plasticity through Advanced Null Space in
Continual Learning [77.94570903726856]
We propose a new continual learning approach, Advanced Null Space (AdNS), to balance the stability and plasticity without storing any old data of previous tasks.
We also present a simple but effective method, intra-task distillation, to improve the performance of the current task.
Experimental results show that the proposed method can achieve better performance compared to state-of-the-art continual learning approaches.
arXiv Detail & Related papers (2022-07-25T11:04:22Z) - Towards Better Plasticity-Stability Trade-off in Incremental Learning: A
simple Linear Connector [8.13916229438606]
Plasticity-stability dilemma is a main problem for incremental learning.
We show that a simple averaging of two independently optimized optima of networks, null-space projection for past tasks and simple SGD for the current task, can attain a meaningful balance between preserving already learned knowledge and granting sufficient flexibility for learning a new task.
arXiv Detail & Related papers (2021-10-15T07:37:20Z) - Understanding the Role of Training Regimes in Continual Learning [51.32945003239048]
Catastrophic forgetting affects the training of neural networks, limiting their ability to learn multiple tasks sequentially.
We study the effect of dropout, learning rate decay, and batch size, on forming training regimes that widen the tasks' local minima.
arXiv Detail & Related papers (2020-06-12T06:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.