New Insights for the Stability-Plasticity Dilemma in Online Continual
Learning
- URL: http://arxiv.org/abs/2302.08741v1
- Date: Fri, 17 Feb 2023 07:43:59 GMT
- Title: New Insights for the Stability-Plasticity Dilemma in Online Continual
Learning
- Authors: Dahuin Jung, Dongjin Lee, Sunwon Hong, Hyemi Jang, Ho Bae, Sungroh
Yoon
- Abstract summary: We propose an online continual learning framework named multi-scale feature adaptation network (MuFAN)
MuFAN outperforms other state-of-the-art continual learning methods on the SVHN, CIFAR100, miniImageNet, and CORe50 datasets.
- Score: 21.664470275289407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of continual learning is to learn new tasks continuously (i.e.,
plasticity) without forgetting previously learned knowledge from old tasks
(i.e., stability). In the scenario of online continual learning, wherein data
comes strictly in a streaming manner, the plasticity of online continual
learning is more vulnerable than offline continual learning because the
training signal that can be obtained from a single data point is limited. To
overcome the stability-plasticity dilemma in online continual learning, we
propose an online continual learning framework named multi-scale feature
adaptation network (MuFAN) that utilizes a richer context encoding extracted
from different levels of a pre-trained network. Additionally, we introduce a
novel structure-wise distillation loss and replace the commonly used batch
normalization layer with a newly proposed stability-plasticity normalization
module to train MuFAN that simultaneously maintains high plasticity and
stability. MuFAN outperforms other state-of-the-art continual learning methods
on the SVHN, CIFAR100, miniImageNet, and CORe50 datasets. Extensive experiments
and ablation studies validate the significance and scalability of each proposed
component: 1) multi-scale feature maps from a pre-trained encoder, 2) the
structure-wise distillation loss, and 3) the stability-plasticity normalization
module in MuFAN. Code is publicly available at
https://github.com/whitesnowdrop/MuFAN.
Related papers
- Continual Task Learning through Adaptive Policy Self-Composition [54.95680427960524]
CompoFormer is a structure-based continual transformer model that adaptively composes previous policies via a meta-policy network.
Our experiments reveal that CompoFormer outperforms conventional continual learning (CL) methods, particularly in longer task sequences.
arXiv Detail & Related papers (2024-11-18T08:20:21Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
Existing methods rely heavily on modal-specific pretraining and joint-modal tuning, leading to significant computational burdens when expanding to new modalities.
We propose PathWeave, a flexible and scalable framework with modal-Path sWitching and ExpAnsion abilities.
PathWeave performs comparably to state-of-the-art MLLMs while concurrently reducing parameter training burdens by 98.73%.
arXiv Detail & Related papers (2024-10-26T13:19:57Z) - Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal [54.93261535899478]
In real-world applications, such as robotic control of reinforcement learning, the tasks are changing, and new tasks arise in a sequential order.
This situation poses the new challenge of plasticity-stability trade-off for training an agent who can adapt to task changes and retain acquired knowledge.
We propose a rehearsal-based continual diffusion model, called Continual diffuser (CoD), to endow the diffuser with the capabilities of quick adaptation (plasticity) and lasting retention (stability)
arXiv Detail & Related papers (2024-09-04T08:21:47Z) - Branch-Tuning: Balancing Stability and Plasticity for Continual Self-Supervised Learning [33.560003528712414]
Self-supervised learning (SSL) has emerged as an effective paradigm for deriving general representations from vast amounts of unlabeled data.
This poses a challenge in striking a balance between stability and plasticity when adapting to new information.
We propose Branch-tuning, an efficient and straightforward method that achieves a balance between stability and plasticity in continual SSL.
arXiv Detail & Related papers (2024-03-27T05:38:48Z) - New metrics for analyzing continual learners [27.868967961503962]
Continual Learning (CL) poses challenges to standard learning algorithms.
This stability-plasticity dilemma remains central to CL and multiple metrics have been proposed to adequately measure stability and plasticity separately.
We propose new metrics that account for the task's increasing difficulty.
arXiv Detail & Related papers (2023-09-01T13:53:33Z) - CTP: Towards Vision-Language Continual Pretraining via Compatible
Momentum Contrast and Topology Preservation [128.00940554196976]
Vision-Language Continual Pretraining (VLCP) has shown impressive results on diverse downstream tasks by offline training on large-scale datasets.
To support the study of Vision-Language Continual Pretraining (VLCP), we first contribute a comprehensive and unified benchmark dataset P9D.
The data from each industry as an independent task supports continual learning and conforms to the real-world long-tail nature to simulate pretraining on web data.
arXiv Detail & Related papers (2023-08-14T13:53:18Z) - IF2Net: Innately Forgetting-Free Networks for Continual Learning [49.57495829364827]
Continual learning can incrementally absorb new concepts without interfering with previously learned knowledge.
Motivated by the characteristics of neural networks, we investigated how to design an Innately Forgetting-Free Network (IF2Net)
IF2Net allows a single network to inherently learn unlimited mapping rules without telling task identities at test time.
arXiv Detail & Related papers (2023-06-18T05:26:49Z) - Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks
in Continual Learning [23.15206507040553]
We propose Auxiliary Network Continual Learning (ANCL) to equip the neural network with the ability to learn the current task.
ANCL applies an additional auxiliary network which promotes plasticity to the continually learned model which mainly focuses on stability.
More concretely, the proposed framework materializes in a regularizer that naturally interpolates between plasticity and stability.
arXiv Detail & Related papers (2023-03-16T17:00:42Z) - New Insights on Relieving Task-Recency Bias for Online Class Incremental
Learning [37.888061221999294]
In all settings, the online class incremental learning (OCIL) is more challenging and can be encountered more frequently in real world.
To strike a preferable trade-off between stability and plasticity, we propose an Adaptive Focus Shifting algorithm.
arXiv Detail & Related papers (2023-02-16T11:52:00Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
"Online" continual learning enables evaluating both information retention and online learning efficacy.
In online continual learning, each incoming small batch of data is first used for testing and then added to the training set, making the problem truly online.
We introduce a new benchmark for online continual visual learning that exhibits large scale and natural distribution shifts.
arXiv Detail & Related papers (2021-08-20T06:17:20Z) - Enabling Continual Learning with Differentiable Hebbian Plasticity [18.12749708143404]
Continual learning is the problem of sequentially learning new tasks or knowledge while protecting previously acquired knowledge.
catastrophic forgetting poses a grand challenge for neural networks performing such learning process.
We propose a Differentiable Hebbian Consolidation model which is composed of a Differentiable Hebbian Plasticity.
arXiv Detail & Related papers (2020-06-30T06:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.