Learning a Low-Rank Feature Representation: Achieving Better Trade-Off
between Stability and Plasticity in Continual Learning
- URL: http://arxiv.org/abs/2312.08740v1
- Date: Thu, 14 Dec 2023 08:34:11 GMT
- Title: Learning a Low-Rank Feature Representation: Achieving Better Trade-Off
between Stability and Plasticity in Continual Learning
- Authors: Zhenrong Liu, Yang Li, Yi Gong and Yik-Chung Wu
- Abstract summary: In continual learning, networks confront a trade-off between stability and plasticity when trained on a sequence of tasks.
We propose a novel training algorithm called LRFR to bolster plasticity without sacrificing stability.
Using CIFAR-100 and TinyImageNet as benchmark datasets for continual learning, the proposed approach consistently outperforms state-of-the-art methods.
- Score: 20.15493383736196
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In continual learning, networks confront a trade-off between stability and
plasticity when trained on a sequence of tasks. To bolster plasticity without
sacrificing stability, we propose a novel training algorithm called LRFR. This
approach optimizes network parameters in the null space of the past tasks'
feature representation matrix to guarantee the stability. Concurrently, we
judiciously select only a subset of neurons in each layer of the network while
training individual tasks to learn the past tasks' feature representation
matrix in low-rank. This increases the null space dimension when designing
network parameters for subsequent tasks, thereby enhancing the plasticity.
Using CIFAR-100 and TinyImageNet as benchmark datasets for continual learning,
the proposed approach consistently outperforms state-of-the-art methods.
Related papers
- Continual Learning via Sequential Function-Space Variational Inference [65.96686740015902]
We propose an objective derived by formulating continual learning as sequential function-space variational inference.
Compared to objectives that directly regularize neural network predictions, the proposed objective allows for more flexible variational distributions.
We demonstrate that, across a range of task sequences, neural networks trained via sequential function-space variational inference achieve better predictive accuracy than networks trained with related methods.
arXiv Detail & Related papers (2023-12-28T18:44:32Z) - Towards Plastic and Stable Exemplar-Free Incremental Learning: A Dual-Learner Framework with Cumulative Parameter Averaging [12.168402195820649]
We propose a Dual-Learner framework with Cumulative.
Averaging (DLCPA)
We show that DLCPA outperforms several state-of-the-art exemplar-free baselines in both Task-IL and Class-IL settings.
arXiv Detail & Related papers (2023-10-28T08:48:44Z) - Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks
in Continual Learning [23.15206507040553]
We propose Auxiliary Network Continual Learning (ANCL) to equip the neural network with the ability to learn the current task.
ANCL applies an additional auxiliary network which promotes plasticity to the continually learned model which mainly focuses on stability.
More concretely, the proposed framework materializes in a regularizer that naturally interpolates between plasticity and stability.
arXiv Detail & Related papers (2023-03-16T17:00:42Z) - Balancing Stability and Plasticity through Advanced Null Space in
Continual Learning [77.94570903726856]
We propose a new continual learning approach, Advanced Null Space (AdNS), to balance the stability and plasticity without storing any old data of previous tasks.
We also present a simple but effective method, intra-task distillation, to improve the performance of the current task.
Experimental results show that the proposed method can achieve better performance compared to state-of-the-art continual learning approaches.
arXiv Detail & Related papers (2022-07-25T11:04:22Z) - Continual Learning with Guarantees via Weight Interval Constraints [18.791232422083265]
We introduce a new training paradigm that enforces interval constraints on neural network parameter space to control forgetting.
We show how to put bounds on forgetting by reformulating continual learning of a model as a continual contraction of its parameter space.
arXiv Detail & Related papers (2022-06-16T08:28:37Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
Imposing consistency through proxy tasks has been shown to enhance data-driven learning.
This paper introduces novel and effective consistency strategies for optical flow estimation.
arXiv Detail & Related papers (2022-04-14T22:58:30Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
Deep neural networks suffer from catastrophic forgetting when learning new categories.
We propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively.
arXiv Detail & Related papers (2022-04-10T11:38:33Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
We propose a simple task-specific feature map transformation strategy for continual learning.
Theses provide powerful flexibility for learning new tasks, achieved with minimal parameters added to the base architecture.
We demonstrate the efficacy and efficiency of our method with an extensive set of experiments in discriminative (CIFAR-100 and ImageNet-1K) and generative sequences of tasks.
arXiv Detail & Related papers (2021-03-25T01:48:14Z) - Training Networks in Null Space of Feature Covariance for Continual
Learning [34.095874368589904]
We propose a novel network training algorithm called Adam-NSCL, which sequentially optimize network parameters in the null space of previous tasks.
We apply our approach to training networks for continual learning on benchmark datasets of CIFAR-100 and TinyImageNet.
arXiv Detail & Related papers (2021-03-12T07:21:48Z) - Enabling Continual Learning with Differentiable Hebbian Plasticity [18.12749708143404]
Continual learning is the problem of sequentially learning new tasks or knowledge while protecting previously acquired knowledge.
catastrophic forgetting poses a grand challenge for neural networks performing such learning process.
We propose a Differentiable Hebbian Consolidation model which is composed of a Differentiable Hebbian Plasticity.
arXiv Detail & Related papers (2020-06-30T06:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.