Quantum Brownian Motion in the Caldeira-Leggett Model with a Damped
Environment
- URL: http://arxiv.org/abs/2303.09516v1
- Date: Thu, 16 Mar 2023 17:32:24 GMT
- Title: Quantum Brownian Motion in the Caldeira-Leggett Model with a Damped
Environment
- Authors: Lester Buxton, Marc-Thomas Russo, Jim Al-Khalili, Andrea Rocco
- Abstract summary: We derive the master equation of the quantum system of interest (a particle in a general potential)
We analyze numerically the case of a particle in a double-well potential, and find that this modification changes both the rate of decoherence at short times and the well-transfer probability at longer times.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We model a quantum system coupled to an environment of damped harmonic
oscillators by following the approach of Caldeira-Leggett and adopting the
Caldirola-Kanai Lagrangian for the bath oscillators. In deriving the master
equation of the quantum system of interest (a particle in a general potential),
we show that the potential is modified non-trivially by a new inverted harmonic
oscillator term, induced by the damping of the bath oscillators. We analyze
numerically the case of a particle in a double-well potential, and find that
this modification changes both the rate of decoherence at short times and the
well-transfer probability at longer times. We also identify a simple rescaling
condition that keeps the potential fixed despite changes in the environmental
damping. Here, the increase of environmental damping leads to a slowing of
decoherence.
Related papers
- Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Relationship between classical and quantum mechanics in micellar aqueous
solutions of surfactants [0.0]
Micellar aqueous solutions of ionic surfactants have been observed to exhibit proton delocalization (the nuclear quantum effect)
It is shown in this paper that such phenomena can be explained with the help of the interpolating Schr"odinger equation proposed by Ghose (Ghose, 2002)
arXiv Detail & Related papers (2023-06-11T08:33:57Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Initial value formulation of a quantum damped harmonic oscillator [0.18416014644193066]
We study the initial state-dependence, decoherence, and thermalization of a quantum damped harmonic oscillator.
We find that the dynamics must include a non-vanishing noise term to yield physical results for the purity.
We briefly consider time-nonlocal dissipation as well, to show that the fluctuation-dissipation relation is satisfied for a specific choice of dissipation kernels.
arXiv Detail & Related papers (2023-03-08T19:03:12Z) - Orbit quantization in a retarded harmonic oscillator [0.0]
We analytically predict the value of the first Hopf bifurcation, unleashing a self-oscillatory motion.
When the system is driven very far from equilibrium, a multiscale strange attractor displaying intrinsic and robust intermittency is uncovered.
arXiv Detail & Related papers (2023-01-25T04:47:06Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Signatures of Dissipation Driven Quantum Phase Transition in Rabi Model [0.0]
We investigate the equilibrium properties and relaxation features of the dissipative quantum Rabi model.
We show that, in the Ohmic regime, a Beretzinski-Kosterlitz-Thouless quantum phase transition occurs by varying the coupling strength.
arXiv Detail & Related papers (2022-05-23T18:13:10Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.