論文の概要: VEIL: Vetting Extracted Image Labels from In-the-Wild Captions for
Weakly-Supervised Object Detection
- arxiv url: http://arxiv.org/abs/2303.09608v2
- Date: Thu, 24 Aug 2023 21:20:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-28 17:54:07.436375
- Title: VEIL: Vetting Extracted Image Labels from In-the-Wild Captions for
Weakly-Supervised Object Detection
- Title(参考訳): veil: 弱教師付き物体検出のための字幕から抽出された画像ラベル
- Authors: Arushi Rai, Adriana Kovashka
- Abstract要約: ノイズキャプションから抽出したラベルを「ベット」する手法を提案し,それを弱教師付き物体検出(WSOD)に利用する。
キャプション中のラベルノイズの種類を分析し,抽出されたラベルが実際に画像に存在するか否かを予測する分類器を訓練する。
- 参考スコア(独自算出の注目度): 33.66537809438079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of large-scale vision-language datasets is limited for object
detection due to the negative impact of label noise on localization. Prior
methods have shown how such large-scale datasets can be used for pretraining,
which can provide initial signal for localization, but is insufficient without
clean bounding-box data for at least some categories. We propose a technique to
"vet" labels extracted from noisy captions, and use them for weakly-supervised
object detection (WSOD). We conduct analysis of the types of label noise in
captions, and train a classifier that predicts if an extracted label is
actually present in the image or not. Our classifier generalizes across dataset
boundaries and across categories. We compare the classifier to eleven baselines
on five datasets, and demonstrate that it can improve WSOD without label
vetting by 30% (31.2 to 40.5 mAP when evaluated on PASCAL VOC)
- Abstract(参考訳): 大規模視覚言語データセットの使用は、ラベルノイズがローカライゼーションに悪影響を及ぼすため、オブジェクト検出に限られる。
従来の手法では、このような大規模なデータセットが事前トレーニングにどのように使用できるかを示しており、ローカライゼーションのための初期信号を提供することができるが、少なくともいくつかのカテゴリにおいて境界データのクリーン化なしには不十分である。
ノイズキャプションから抽出したラベルを"ベット"する手法を提案し,それを弱教師付きオブジェクト検出(WSOD)に利用する。
キャプション中のラベルノイズの種類を分析し,抽出されたラベルが実際に画像に存在するか否かを予測する分類器を訓練する。
分類器はデータセット境界とカテゴリをまたいだ一般化を行う。
分類器を5つのデータセット上で11のベースラインと比較し、PASCAL VOCで評価した場合、ラベルベッティングを30%31.2から40.5mAPにすることなくWSODを改善することができることを示した。
関連論文リスト
- PNT-Edge: Towards Robust Edge Detection with Noisy Labels by Learning
Pixel-level Noise Transitions [119.17602768128806]
特に大規模なデータセットでは、エッジの正確なラベル付けは難しい。
本稿では,ラベル破壊過程をモデル化するために,Pixelレベルのノイズ遷移を学習することを提案する。
論文 参考訳(メタデータ) (2023-07-26T09:45:17Z) - Robust Point Cloud Segmentation with Noisy Annotations [32.991219357321334]
クラスラベルは、実世界のデータセットのインスタンスレベルとバウンダリレベルの両方で誤ってラベル付けされることが多い。
我々は、Point Noise-Adaptive Learningフレームワークを提案することで、インスタンスレベルのラベルノイズを解決するのをリードする。
我々のフレームワークはベースラインを大幅に上回り、完全にクリーンなデータでトレーニングされた上限に匹敵する。
論文 参考訳(メタデータ) (2022-12-06T18:59:58Z) - CTRL: Clustering Training Losses for Label Error Detection [4.49681473359251]
教師付き機械学習では、正確なラベルの使用は高い精度を保証するために極めて重要である。
本稿では,ラベル誤り検出のための新しいフレームワークClustering TRaining Lossesを提案する。
モデルが異なる方法でクリーンでノイズの多いラベルを学習する観察に基づいて、ラベルエラーを2つのステップで検出する。
論文 参考訳(メタデータ) (2022-08-17T18:09:19Z) - Prefix Conditioning Unifies Language and Label Supervision [84.11127588805138]
学習した表現の一般化性を低減することにより,データセットのバイアスが事前学習に悪影響を及ぼすことを示す。
実験では、この単純な手法により、ゼロショット画像認識精度が向上し、画像レベルの分布シフトに対するロバスト性が向上することを示した。
論文 参考訳(メタデータ) (2022-06-02T16:12:26Z) - Semi-Supervised Cascaded Clustering for Classification of Noisy Label
Data [0.3441021278275805]
教師付き分類技術の性能は、データがノイズのあるラベルを持つと劣化することが多い。
ノイズの多いラベルデータに対処するアプローチのほとんどは、分類タスクに巨大なデータセットを必要とするディープニューラルネットワーク(DNN)に依存している。
パターンを抽出し、そのようなデータセットのクラスをカスケード木として生成する半教師付きカスケードクラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-04T17:42:22Z) - Weakly Supervised Semantic Segmentation using Out-of-Distribution Data [50.45689349004041]
弱教師付きセマンティックセグメンテーション(WSSS)法は、しばしばピクセルレベルのローカライゼーションマップ上に構築される。
本稿では,背景と背景を区別する新たな情報源を提案する。
論文 参考訳(メタデータ) (2022-03-08T05:33:35Z) - Multi-label Classification with Partial Annotations using Class-aware
Selective Loss [14.3159150577502]
大規模なマルチラベル分類データセットは、一般的に部分的に注釈付けされている。
部分的なラベリング問題を解析し、2つの重要なアイデアに基づいた解を提案する。
われわれの新しいアプローチにより、OpenImagesデータセット上で最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-21T08:10:55Z) - Instance Correction for Learning with Open-set Noisy Labels [145.06552420999986]
オープンセットノイズラベルの処理にはサンプル選択方式を用いる。
廃棄されたデータは間違ったラベルで書かれており、トレーニングには参加していない。
廃棄されたデータのインスタンスを変更して、廃棄されたデータの予測をラベルに一致させる。
論文 参考訳(メタデータ) (2021-06-01T13:05:55Z) - Identifying noisy labels with a transductive semi-supervised
leave-one-out filter [2.4366811507669124]
本稿では,LGC_LVOF(Local and Global Consistency (LGC) アルゴリズムに基づく一括フィルタリング手法)を導入する。
私たちのアプローチは、大量のラベルのないデータを持つデータセットに最も適していますが、ラベルは多くありません。
論文 参考訳(メタデータ) (2020-09-24T16:50:06Z) - Labelling unlabelled videos from scratch with multi-modal
self-supervision [82.60652426371936]
ビデオデータセットの教師なしラベリングは、強力な機能エンコーダから解放されない。
人間のアノテーションを使わずにビデオデータセットの擬似ラベリングを可能にする新しいクラスタリング手法を提案する。
広範囲な分析により、結果として得られたクラスタは、真理の人間ラベルと高いセマンティックオーバーラップがあることが示されている。
論文 参考訳(メタデータ) (2020-06-24T12:28:17Z) - Weakly-Supervised Salient Object Detection via Scribble Annotations [54.40518383782725]
本稿では,スクリブルラベルからサリエンシを学習するための弱教師付きサリエント物体検出モデルを提案する。
そこで本研究では,予測されたサリエンシマップの構造アライメントを測定するために,新しい尺度であるサリエンシ構造尺度を提案する。
我々の手法は、既存の弱教師付き/非教師付き手法よりも優れているだけでなく、いくつかの完全教師付き最先端モデルと同等である。
論文 参考訳(メタデータ) (2020-03-17T12:59:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。