Measuring Improvement of F$_1$-Scores in Detection of Self-Admitted
Technical Debt
- URL: http://arxiv.org/abs/2303.09617v1
- Date: Thu, 16 Mar 2023 19:47:38 GMT
- Title: Measuring Improvement of F$_1$-Scores in Detection of Self-Admitted
Technical Debt
- Authors: William Aiken, Paul K. Mvula, Paula Branco, Guy-Vincent Jourdan,
Mehrdad Sabetzadeh, Herna Viktor
- Abstract summary: We improve SATD detection with a novel approach that leverages the Bidirectional Representations from Transformers (BERT) architecture.
We find that our trained BERT model improves over the best performance of all previous methods in 19 of the 20 projects in cross-project scenarios.
Future research will look into ways to diversify SATD datasets in order to maximize the latent power in large BERT models.
- Score: 5.750379648650073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence and Machine Learning have witnessed rapid,
significant improvements in Natural Language Processing (NLP) tasks. Utilizing
Deep Learning, researchers have taken advantage of repository comments in
Software Engineering to produce accurate methods for detecting Self-Admitted
Technical Debt (SATD) from 20 open-source Java projects' code. In this work, we
improve SATD detection with a novel approach that leverages the Bidirectional
Encoder Representations from Transformers (BERT) architecture. For comparison,
we re-evaluated previous deep learning methods and applied stratified 10-fold
cross-validation to report reliable F$_1$-scores. We examine our model in both
cross-project and intra-project contexts. For each context, we use re-sampling
and duplication as augmentation strategies to account for data imbalance. We
find that our trained BERT model improves over the best performance of all
previous methods in 19 of the 20 projects in cross-project scenarios. However,
the data augmentation techniques were not sufficient to overcome the lack of
data present in the intra-project scenarios, and existing methods still perform
better. Future research will look into ways to diversify SATD datasets in order
to maximize the latent power in large BERT models.
Related papers
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
We propose a training-required and training-free test-time adaptation framework.
We maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples.
We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets.
arXiv Detail & Related papers (2024-10-20T15:58:43Z) - In-Context Code-Text Learning for Bimodal Software Engineering [26.0027882745058]
Bimodal software analysis initially appeared to be within reach with the advent of large language models.
We postulate that in-context learning for the code-text bimodality is a promising avenue.
We consider a diverse dataset encompassing 23 software engineering tasks, which we transform in an in-context learning format.
arXiv Detail & Related papers (2024-10-08T19:42:00Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Self-Admitted Technical Debt Detection Approaches: A Decade Systematic Review [5.670597842524448]
Technical debt (TD) represents the long-term costs associated with suboptimal design or code decisions in software development.
Self-Admitted Technical Debt (SATD) occurs when developers explicitly acknowledge these trade-offs.
automated detection of SATD has become an increasingly important research area.
arXiv Detail & Related papers (2023-12-19T12:01:13Z) - Weighted Ensemble Self-Supervised Learning [67.24482854208783]
Ensembling has proven to be a powerful technique for boosting model performance.
We develop a framework that permits data-dependent weighted cross-entropy losses.
Our method outperforms both in multiple evaluation metrics on ImageNet-1K.
arXiv Detail & Related papers (2022-11-18T02:00:17Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
Active learning frameworks aim to reduce the cost of data annotation by actively requesting the labeling for the most informative data points.
Some proposed approaches include uncertainty-based techniques, geometric methods, implicit combination of uncertainty-based and geometric approaches.
We present an innovative integration of recent progress in both uncertainty-based and geometric frameworks to enable an efficient exploration/exploitation trade-off in sample selection strategy.
Our framework provides two advantages: (1) accurate posterior estimation, and (2) tune-able trade-off between computational overhead and higher accuracy.
arXiv Detail & Related papers (2022-10-11T20:20:20Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Passive Batch Injection Training Technique: Boosting Network Performance
by Injecting Mini-Batches from a different Data Distribution [39.8046809855363]
This work presents a novel training technique for deep neural networks that makes use of additional data from a distribution that is different from that of the original input data.
To the best of our knowledge, this is the first work that makes use of different data distribution to aid the training of convolutional neural networks (CNNs)
arXiv Detail & Related papers (2020-06-08T08:17:32Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.