Breast Cancer Histopathology Image based Gene Expression Prediction
using Spatial Transcriptomics data and Deep Learning
- URL: http://arxiv.org/abs/2303.09987v1
- Date: Fri, 17 Mar 2023 14:03:40 GMT
- Title: Breast Cancer Histopathology Image based Gene Expression Prediction
using Spatial Transcriptomics data and Deep Learning
- Authors: Md Mamunur Rahaman, Ewan K. A. Millar and Erik Meijering
- Abstract summary: We present BrST-Net, a deep learning framework for predicting gene expression from histopathology images.
We trained and evaluated 10 state-of-the-art deep learning models without utilizing pretrained weights for the prediction of 250 genes.
Our methodology outperforms previous studies, with 237 genes identified with positive correlation, including 24 genes with a median correlation coefficient greater than 0.50.
- Score: 3.583756449759971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tumour heterogeneity in breast cancer poses challenges in predicting outcome
and response to therapy. Spatial transcriptomics technologies may address these
challenges, as they provide a wealth of information about gene expression at
the cell level, but they are expensive, hindering their use in large-scale
clinical oncology studies. Predicting gene expression from hematoxylin and
eosin stained histology images provides a more affordable alternative for such
studies. Here we present BrST-Net, a deep learning framework for predicting
gene expression from histopathology images using spatial transcriptomics data.
Using this framework, we trained and evaluated 10 state-of-the-art deep
learning models without utilizing pretrained weights for the prediction of 250
genes. To enhance the generalisation performance of the main network, we
introduce an auxiliary network into the framework. Our methodology outperforms
previous studies, with 237 genes identified with positive correlation,
including 24 genes with a median correlation coefficient greater than 0.50.
This is a notable improvement over previous studies, which could predict only
102 genes with positive correlation, with the highest correlation values
ranging from 0.29 to 0.34.
Related papers
- Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
Transfer learning is a technique that leverages acquired features from a domain with richer data to enhance the performance of a domain with limited data.
In this paper, we investigate the improvement of clinically significant prostate cancer prediction in T2-weighted images through transfer learning from breast cancer.
arXiv Detail & Related papers (2024-05-13T15:57:27Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - An end-to-end framework for gene expression classification by
integrating a background knowledge graph: application to cancer prognosis
prediction [1.5484595752241122]
We proposed an end-to-end framework to handle secondary data to construct a classification model for primary data.
We applied this framework to cancer prognosis prediction using gene expression data and a biological network.
arXiv Detail & Related papers (2023-06-29T11:20:47Z) - hist2RNA: An efficient deep learning architecture to predict gene
expression from breast cancer histopathology images [11.822321981275232]
Deep learning algorithms can effectively extract morphological patterns in digital histopathology images to predict molecular phenotypes quickly and cost-effectively.
We propose a new, computationally efficient approach called hist2RNA inspired by bulk RNA-sequencing techniques to predict the expression of 138 genes.
arXiv Detail & Related papers (2023-04-10T10:54:32Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Attention-based Interpretable Regression of Gene Expression in Histology [0.0]
Interpretability of deep learning is widely used to evaluate the reliability of medical imaging models.
We show that interpretability can reveal connections between the microscopic appearance of cancer tissue and its gene expression profiling.
arXiv Detail & Related papers (2022-08-29T07:30:33Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
We learned machine learning models to predict SNPs using 56 brain imaging QTs.
SNPs within the known Alzheimer disease (AD) risk gene APOE had lowest RMSE for lasso and random forest.
Random forests identified additional SNPs that were not prioritized by the linear models but are known to be associated with brain-related disorders.
arXiv Detail & Related papers (2022-03-31T20:15:22Z) - Transcriptome-wide prediction of prostate cancer gene expression from
histopathology images using co-expression based convolutional neural networks [0.8874479658912061]
We propose a new, computationally efficient approach for disease specific modelling of relationships between morphology and gene expression.
We conducted the first transcriptome-wide analysis in prostate cancer, using CNNs to predict bulk RNA-sequencing estimates.
arXiv Detail & Related papers (2021-04-19T13:50:25Z) - Cancer Gene Profiling through Unsupervised Discovery [49.28556294619424]
We introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers.
Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm.
Our signature reports promising results on distinguishing immune inflammatory and immune desert tumors.
arXiv Detail & Related papers (2021-02-11T09:04:45Z) - Using ontology embeddings for structural inductive bias in gene
expression data analysis [6.587739898387445]
Stratifying cancer patients based on their gene expression levels allows improving diagnosis, survival analysis and treatment planning.
We propose to incorporate biological knowledge about genes into the machine learning system for the task of patient classification given their gene expression data.
arXiv Detail & Related papers (2020-11-22T12:13:29Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.