論文の概要: Image comparison and scaling via nonlinear elasticity
- arxiv url: http://arxiv.org/abs/2303.10103v1
- Date: Fri, 17 Mar 2023 16:26:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-20 13:47:59.706046
- Title: Image comparison and scaling via nonlinear elasticity
- Title(参考訳): 非線形弾性による画像比較とスケーリング
- Authors: John M. Ball and Christopher L. Horner
- Abstract要約: 画像領域間の相同性の適切なクラスにおける最小化子の存在は、自然仮説の下で確立される。
線形関連画像に対して,最小化アルゴリズムが線形変換を一意の最小化器として提供するか否かを検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A nonlinear elasticity model for comparing images is formulated and analyzed,
in which optimal transformations between images are sought as minimizers of an
integral functional. The existence of minimizers in a suitable class of
homeomorphisms between image domains is established under natural hypotheses.
We investigate whether for linearly related images the minimization algorithm
delivers the linear transformation as the unique minimizer.
- Abstract(参考訳): 画像比較のための非線形弾性モデルを定式化し解析し、積分関数の最小値として画像間の最適な変換を求める。
画像領域間の相同性の適切なクラスにおける最小化子の存在は、自然仮説の下で確立される。
線形関連画像に対して,最小化アルゴリズムが一意な最小化として線形変換をもたらすかどうかを検討する。
関連論文リスト
- A nonlinear elasticity model in computer vision [0.0]
本研究の目的は,2つの画像を比較するために著者らが以前に導入した非線形弾性モデルを分析することである。
変換の存在は、勾配ベクトル値の強度写像の$値対の微分の中で証明される。
問題は、線形写像によって関連づけられた画像に対して、一意性が与えられるかどうかである。
論文 参考訳(メタデータ) (2024-08-30T12:27:22Z) - Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation [57.10353686244835]
我々は、回転、スケーリング、せん断、翻訳を含む入力画像の幾何学的変換に対するニューラルネットワークの検証の問題に対処する。
提案手法は, 分枝・分枝リプシッツと組み合わせたサンプリングおよび線形近似を用いて, 画素値に対する楽音線形制約を求める。
提案手法では,既存の手法よりも最大32%の検証ケースが解決されている。
論文 参考訳(メタデータ) (2024-08-23T15:02:09Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Linear Convergence of ISTA and FISTA [8.261388753972234]
疎表現を用いた線形逆問題の解法として,反復縮小保持アルゴリズム (ISTA) のクラスを再検討する。
滑らかな部分を凸とする以前の仮定は最小二乗モデルを弱める。
目的値と2乗近位下次ノルムの両方において、線形収束を合成最適化に一般化する。
論文 参考訳(メタデータ) (2022-12-13T02:02:50Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Hessian Eigenspectra of More Realistic Nonlinear Models [73.31363313577941]
私たちは、非線形モデルの広いファミリーのためのヘッセン固有スペクトルの言語的特徴付けを行います。
我々の分析は、より複雑な機械学習モデルで観察される多くの顕著な特徴の起源を特定するために一歩前進する。
論文 参考訳(メタデータ) (2021-03-02T06:59:52Z) - Joint Estimation of Image Representations and their Lie Invariants [57.3768308075675]
画像は世界の状態とコンテンツの両方をエンコードする。
この情報の自動抽出は、画像表現に固有の高次元かつ絡み合った符号化のために困難である。
本稿では,これらの課題の解決を目的とした2つの理論的アプローチを紹介する。
論文 参考訳(メタデータ) (2020-12-05T00:07:41Z) - The role of optimization geometry in single neuron learning [12.891722496444036]
近年,表現型ニューラルネットワークの学習において,最適化アルゴリズムの選択が一般化性能に影響を与えることが実証されている。
幾何学と特徴幾何学の相互作用が、どのようにしてアウト・オブ・サンプレットを導き、性能を向上させるかを示す。
論文 参考訳(メタデータ) (2020-06-15T17:39:44Z) - Weighted Encoding Based Image Interpolation With Nonlocal Linear
Regression Model [8.013127492678272]
超高解像度画像では、低解像度画像は、ぼやけやノイズを伴わずに、その高解像度画像から直接ダウンサンプリングされる。
この問題に対処するために,スパース表現に基づく新しい画像モデルを提案する。
クラスタリングではなく、オンラインの適応サブ辞書を学習するための新しいアプローチ。
論文 参考訳(メタデータ) (2020-03-04T03:20:21Z) - Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities [14.848525762485872]
非拡張写像、単調リプシッツ作用素、近位写像の間の接続を利用して、単調包含問題に対する準最適解を得る。
これらの結果は、変分不等式問題に対する強い解の近似、凸凸凹 min-max 最適化問題の近似、および min-max 最適化問題における勾配のノルムの最小化について、ほぼ最適に保証される。
論文 参考訳(メタデータ) (2020-02-20T17:12:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。