論文の概要: Causal Discovery from Temporal Data: An Overview and New Perspectives
- arxiv url: http://arxiv.org/abs/2303.10112v2
- Date: Thu, 6 Apr 2023 15:45:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 16:46:29.018092
- Title: Causal Discovery from Temporal Data: An Overview and New Perspectives
- Title(参考訳): 時間データからの因果発見 : 概観と新たな展望
- Authors: Chang Gong, Di Yao, Chuzhe Zhang, Wenbin Li and Jingping Bi
- Abstract要約: 時間データの分析は、様々なアプリケーションに非常に有用である。
因果的発見 時間的データから因果関係を 学ぶことは 興味深いが 重要な課題だ
本稿では,2つのカテゴリ間の相関関係を定義し,既存のソリューションの体系的概要を提供する。
- 参考スコア(独自算出の注目度): 6.251443497694126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal data, representing chronological observations of complex systems,
has always been a typical data structure that can be widely generated by many
domains, such as industry, medicine and finance. Analyzing this type of data is
extremely valuable for various applications. Thus, different temporal data
analysis tasks, eg, classification, clustering and prediction, have been
proposed in the past decades. Among them, causal discovery, learning the causal
relations from temporal data, is considered an interesting yet critical task
and has attracted much research attention. Existing casual discovery works can
be divided into two highly correlated categories according to whether the
temporal data is calibrated, ie, multivariate time series casual discovery, and
event sequence casual discovery. However, most previous surveys are only
focused on the time series casual discovery and ignore the second category. In
this paper, we specify the correlation between the two categories and provide a
systematical overview of existing solutions. Furthermore, we provide public
datasets, evaluation metrics and new perspectives for temporal data casual
discovery.
- Abstract(参考訳): 複雑なシステムの時系列観測を表す時間データは、常に典型的なデータ構造であり、産業、医療、金融など多くの領域で広く利用されている。
このタイプのデータを分析することは、様々なアプリケーションにとって非常に価値がある。
このように,過去数十年間,分類,クラスタリング,予測といった時間的データ分析タスクが提案されてきた。
その中でも,時間的データから因果関係を学習する因果発見は興味深いが重要な課題であり,研究の注目を集めている。
既存のカジュアルな発見作業は、時間データの校正、多変量時系列のカジュアルな発見、イベントシークエンスなカジュアルな発見の2つの高い相関カテゴリに分けることができる。
しかしながら、以前の調査のほとんどは、時系列のカジュアルな発見のみに焦点を当てており、第2のカテゴリを無視している。
本稿では,2つのカテゴリ間の相関関係を定義し,既存のソリューションの体系的概要を提供する。
さらに,公開データセット,評価指標,時間的データのカジュアルな発見のための新たな視点を提供する。
関連論文リスト
- A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
時系列およびS時間データにおける拡散モデルの使用について概観し、それらをモデル、タスクタイプ、データモダリティ、実用的なアプリケーションドメインで分類する。
我々は拡散モデルを無条件型と条件付き型に分類し、時系列とS時間データを別々に議論する。
本調査は,医療,レコメンデーション,気候,エネルギー,オーディオ,交通など,さまざまな分野の応用を幅広くカバーしている。
論文 参考訳(メタデータ) (2024-04-29T17:19:40Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
時系列データ、特に時系列データと時間時間データは、現実世界のアプリケーションで広く使われている。
大規模言語やその他の基礎モデルの最近の進歩は、時系列データマイニングや時間データマイニングでの使用の増加に拍車を掛けている。
論文 参考訳(メタデータ) (2023-10-16T09:06:00Z) - Causal discovery for time series with constraint-based model and PMIME
measure [0.0]
本稿では,因果探索アルゴリズムと情報理論に基づく測度を組み合わせた時系列データにおける因果関係の発見手法を提案する。
提案手法を複数のシミュレーションデータセット上で評価し,有望な結果を示す。
論文 参考訳(メタデータ) (2023-05-31T09:38:50Z) - A Survey on Causal Discovery Methods for I.I.D. and Time Series Data [4.57769506869942]
因果発見(CD)アルゴリズムは、関連する観測データからシステムの変数間の因果関係を識別することができる。
本稿では、独立および同一分散データ(I.I.D.)データと時系列データの両方から因果発見を行うために設計された手法について広範な議論を行う。
論文 参考訳(メタデータ) (2023-03-27T09:21:41Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
時系列異常検出は、製造業や医療を含む幅広い研究分野や応用に応用されている。
時系列の大規模かつ複雑なパターンにより、研究者は異常パターンを検出するための特別な深層学習モデルを開発するようになった。
本調査は,ディープラーニングを用いた構造化および総合的時系列異常検出モデルの提供に焦点を当てる。
論文 参考訳(メタデータ) (2022-11-09T22:40:22Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Causal Discovery from Sparse Time-Series Data Using Echo State Network [0.0]
時系列データ間の因果関係の発見は、症状の原因の診断に役立つ。
本稿では,2つの部分から構成される新しいシステムを提案する。第1部はガウスプロセス回帰を,第2部はエコー状態ネットワークを活用する。
本稿では,対応するマシューズ相関係数 (MCC) と受信器動作特性曲線 (ROC) について報告する。
論文 参考訳(メタデータ) (2022-01-09T05:55:47Z) - Path Signature Area-Based Causal Discovery in Coupled Time Series [0.0]
本稿では,2変数間の符号付き領域の大きさの意義を解析するために,信頼度系列の応用を提案する。
このアプローチは、2つの時系列の間に存在する因果関係の信頼性を定義する新しい方法を提供する。
論文 参考訳(メタデータ) (2021-10-23T19:57:22Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - Causal Inference for Time series Analysis: Problems, Methods and
Evaluation [11.925605453634638]
時系列データ(英: Time series data)は、医学や金融などの分野によって生成される時系列観測の集合である。
本稿では,時系列データに対する治療効果推定と因果探索という2つの因果推論タスクに着目した。
論文 参考訳(メタデータ) (2021-02-11T03:26:11Z) - Amortized Causal Discovery: Learning to Infer Causal Graphs from
Time-Series Data [63.15776078733762]
本稿では,時系列データから因果関係を推定する新しいフレームワークであるAmortized Causal Discoveryを提案する。
本研究では,本手法が変分モデルとして実装され,因果発見性能が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:59:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。