She Elicits Requirements and He Tests: Software Engineering Gender Bias
in Large Language Models
- URL: http://arxiv.org/abs/2303.10131v1
- Date: Fri, 17 Mar 2023 17:16:53 GMT
- Title: She Elicits Requirements and He Tests: Software Engineering Gender Bias
in Large Language Models
- Authors: Christoph Treude, Hideaki Hata
- Abstract summary: This study uses data mining techniques to investigate the extent to which software development tasks are affected by implicit gender bias.
We translate each task from English into a genderless language and back, and investigate the pronouns associated with each task.
Specifically, requirements elicitation was associated with the pronoun "he" in only 6% of cases, while testing was associated with "he" in 100% of cases.
- Score: 17.837267486473415
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Implicit gender bias in software development is a well-documented issue, such
as the association of technical roles with men. To address this bias, it is
important to understand it in more detail. This study uses data mining
techniques to investigate the extent to which 56 tasks related to software
development, such as assigning GitHub issues and testing, are affected by
implicit gender bias embedded in large language models. We systematically
translated each task from English into a genderless language and back, and
investigated the pronouns associated with each task. Based on translating each
task 100 times in different permutations, we identify a significant disparity
in the gendered pronoun associations with different tasks. Specifically,
requirements elicitation was associated with the pronoun "he" in only 6% of
cases, while testing was associated with "he" in 100% of cases. Additionally,
tasks related to helping others had a 91% association with "he" while the same
association for tasks related to asking coworkers was only 52%. These findings
reveal a clear pattern of gender bias related to software development tasks and
have important implications for addressing this issue both in the training of
large language models and in broader society.
Related papers
- The Gender-GAP Pipeline: A Gender-Aware Polyglot Pipeline for Gender
Characterisation in 55 Languages [51.2321117760104]
This paper describes the Gender-GAP Pipeline, an automatic pipeline to characterize gender representation in large-scale datasets for 55 languages.
The pipeline uses a multilingual lexicon of gendered person-nouns to quantify the gender representation in text.
We showcase it to report gender representation in WMT training data and development data for the News task, confirming that current data is skewed towards masculine representation.
arXiv Detail & Related papers (2023-08-31T17:20:50Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - INCLUSIFY: A benchmark and a model for gender-inclusive German [0.0]
Gender-inclusive language is important for achieving gender equality in languages with gender inflections.
A handful of tools have been developed to help people use gender-inclusive language.
We present a dataset and measures for benchmarking them, and present a model that implements these tasks.
arXiv Detail & Related papers (2022-12-05T19:37:48Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
We investigate how seniority impacts the degree of gender bias exhibited in pretrained neural generation models.
Our results show that GPT-2 amplifies bias by considering women as junior and men as senior more often than the ground truth in both domains.
These results suggest that NLP applications built using GPT-2 may harm women in professional capacities.
arXiv Detail & Related papers (2022-05-19T20:05:02Z) - Gendered Language in Resumes and its Implications for Algorithmic Bias
in Hiring [0.0]
We train a series of models to classify the gender of the applicant.
We investigate whether it is possible to obfuscate gender from resumes.
We find that there is a significant amount of gendered information in resumes even after obfuscation.
arXiv Detail & Related papers (2021-12-16T14:26:36Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
We perform a case study on the singular they, a common way to promote gender inclusion in English.
We show how a model can be trained to produce gender-neutral English with 1% word error rate with no human-labeled data.
arXiv Detail & Related papers (2021-02-12T21:47:48Z) - How True is GPT-2? An Empirical Analysis of Intersectional Occupational
Biases [50.591267188664666]
Downstream applications are at risk of inheriting biases contained in natural language models.
We analyze the occupational biases of a popular generative language model, GPT-2.
For a given job, GPT-2 reflects the societal skew of gender and ethnicity in the US, and in some cases, pulls the distribution towards gender parity.
arXiv Detail & Related papers (2021-02-08T11:10:27Z) - Type B Reflexivization as an Unambiguous Testbed for Multilingual
Multi-Task Gender Bias [5.239305978984572]
We show that for languages with type B reflexivization, we can construct multi-task challenge datasets for detecting gender bias.
In these languages, the direct translation of 'the doctor removed his mask' is not ambiguous between a coreferential reading and a disjoint reading.
We present a multilingual, multi-task challenge dataset, which spans four languages and four NLP tasks.
arXiv Detail & Related papers (2020-09-24T23:47:18Z) - Mitigating Gender Bias in Machine Learning Data Sets [5.075506385456811]
Gender bias has been identified in the context of employment advertising and recruitment tools.
This paper proposes a framework for the identification of gender bias in training data for machine learning.
arXiv Detail & Related papers (2020-05-14T12:06:02Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.