論文の概要: The Challenge of Differentially Private Screening Rules
- arxiv url: http://arxiv.org/abs/2303.10303v1
- Date: Sat, 18 Mar 2023 01:45:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 20:12:41.480551
- Title: The Challenge of Differentially Private Screening Rules
- Title(参考訳): 個人別スクリーニングルールの課題
- Authors: Amol Khanna, Fred Lu, Edward Raff
- Abstract要約: 線形回帰とロジスティック回帰のための最初の微分プライベートスクリーニングルールを開発する。
そこで我々は,プライバシーを確保するために付加されるノイズの量によって,有用なプライベートスクリーニングルールを策定する作業の難しさを発見する。
- 参考スコア(独自算出の注目度): 32.18582226044492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Linear $L_1$-regularized models have remained one of the simplest and most
effective tools in data analysis, especially in information retrieval problems
where n-grams over text with TF-IDF or Okapi feature values are a strong and
easy baseline. Over the past decade, screening rules have risen in popularity
as a way to reduce the runtime for producing the sparse regression weights of
$L_1$ models. However, despite the increasing need of privacy-preserving models
in information retrieval, to the best of our knoweledge, no differentially
private screening rule exists. In this paper, we develop the first
differentially private screening rule for linear and logistic regression. In
doing so, we discover difficulties in the task of making a useful private
screening rule due to the amount of noise added to ensure privacy. We provide
theoretical arguments and experimental evidence that this difficulty arises
from the screening step itself and not the private optimizer. Based on our
results, we highlight that developing an effective private $L_1$ screening
method is an open problem in the differential privacy literature.
- Abstract(参考訳): 線形$L_1$-regularizedモデルは、特にTF-IDFやオカピの特徴値を持つテキスト上のn-gramが強くて簡単なベースラインである情報検索問題において、データ解析において最も単純かつ効果的なツールの1つとして残されている。
過去10年間、スクリーニングルールは、$l_1$モデルの疎回帰重みを生成するランタイムを減らす方法として人気を高めてきた。
しかし、情報検索におけるプライバシー保護モデルの必要性が高まっているにもかかわらず、私たちの知る限りでは、異なるプライベートスクリーニングルールは存在しない。
本稿では,線形回帰とロジスティック回帰に対する最初の微分プライベートスクリーニング法を開発する。
そこで我々は,プライバシーを確保するために付加されるノイズの量によって,有用なプライベートスクリーニングルールを策定する作業の難しさを発見する。
我々は、この困難がプライベートオプティマイザではなくスクリーニングステップ自体から生じるという理論的議論と実験的な証拠を提供する。
本研究の結果から, 差分プライバシー文学において, 有効プライベートな$L_1$スクリーニング手法の開発が未解決の問題であることを強調した。
関連論文リスト
- FLIPHAT: Joint Differential Privacy for High Dimensional Sparse Linear Bandits [8.908421753758475]
高次元スパース線形帯域は、シーケンシャルな意思決定問題の効率的なモデルとして機能する。
データプライバシの懸念により、我々は、共同でプライベートな高次元の疎線形帯域について検討する。
FLIPHATは,プライバシパラメータの点で最適に後悔することを示す。
論文 参考訳(メタデータ) (2024-05-22T22:19:12Z) - On the Complexity of Differentially Private Best-Arm Identification with
Fixed Confidence [16.295693624977563]
我々は、$epsilon$-global Differential Privacyの下で、信頼度を固定したベストアーム識別の問題について検討する。
われわれの限界は、プライバシー予算によって2つのプライバシー体制が存在することを示唆している。
我々はトップ2アルゴリズムの$epsilon$-global DP変種であるAdaP-TTを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:07:25Z) - Differentially Private Statistical Inference through $\beta$-Divergence
One Posterior Sampling [2.8544822698499255]
本稿では,モデルとデータ生成プロセス間の$beta$-divergenceの最小化を目標とした,一般化後部からの後部サンプリング手法を提案する。
これにより、基礎となるモデルの変更を必要とせずに、一般的に適用可能なプライベートな推定が可能になる。
我々は、$beta$D-Bayesが同一のプライバシー保証に対してより正確な推測を行うことを示す。
論文 参考訳(メタデータ) (2023-07-11T12:00:15Z) - Generating Private Synthetic Data with Genetic Algorithms [29.756119782419955]
基礎となる機密データセットの統計特性を近似した微分プライベートな合成データを効率的に生成する問題について検討する。
ゼロ階最適化に基づく遺伝的アルゴリズムであるPrivate-GSDを提案する。
そこで,Private-GSDは,非微分クエリにおいて,微分可能なクエリを近似する精度で,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-05T21:19:37Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
差分プライバシーと適応データ分析の2つの関連分野の空間複雑性について検討する。
差分プライバシーで効率的に解くために指数関数的に多くの空間を必要とする問題Pが存在することを示す。
アダプティブデータ分析の研究の行は、アダプティブクエリのシーケンスに応答するのに必要なサンプルの数を理解することに焦点を当てている。
論文 参考訳(メタデータ) (2023-02-11T14:45:31Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
本研究では,離散データに対するデータ再構成攻撃について検討し,仮説テストの枠組みの下で解析する。
基礎となるプライベートデータが$M$のセットから値を取ると、ターゲットのプライバシパラメータ$epsilon$が$O(log M)$になる。
論文 参考訳(メタデータ) (2022-10-24T23:50:12Z) - Private Domain Adaptation from a Public Source [48.83724068578305]
我々は、公開ラベル付きデータを持つソースドメインから、未ラベル付きプライベートデータを持つターゲットドメインへの適応のための差分プライベート離散性に基づくアルゴリズムを設計する。
我々の解は、Frank-WolfeとMirror-Descentアルゴリズムのプライベートな変種に基づいている。
論文 参考訳(メタデータ) (2022-08-12T06:52:55Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
Private Learning [74.73901662374921]
差分プライベートモデルは、モデルが多数のトレーニング可能なパラメータを含む場合、ユーティリティを劇的に劣化させる。
偏微分プライベート深層モデルの精度向上のためのアルゴリズムemphGradient Embedding Perturbation (GEP)を提案する。
論文 参考訳(メタデータ) (2021-02-25T04:29:58Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
ランダムシャッフルは、局所的ランダム化データの差分プライバシー保証を増幅する。
私たちの結果は、以前の作業よりも単純で、ほぼ同じ保証で差分プライバシーに拡張された新しいアプローチに基づいています。
論文 参考訳(メタデータ) (2020-12-23T17:07:26Z) - Individual Privacy Accounting via a Renyi Filter [33.65665839496798]
個人ごとのパーソナライズされたプライバシ損失推定値に基づいて、より厳格なプライバシ損失会計を行う方法を提案する。
我々のフィルターは、Rogersらによる$(epsilon,delta)$-differential privacyの既知のフィルタよりもシンプルできつい。
論文 参考訳(メタデータ) (2020-08-25T17:49:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。