論文の概要: Neural Frailty Machine: Beyond proportional hazard assumption in neural
survival regressions
- arxiv url: http://arxiv.org/abs/2303.10358v1
- Date: Sat, 18 Mar 2023 08:15:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 19:55:48.742642
- Title: Neural Frailty Machine: Beyond proportional hazard assumption in neural
survival regressions
- Title(参考訳): 神経骨格機械 : 神経生存回帰における比例ハザード仮定を超える
- Authors: Ruofan Wu, Jiawei Qiao, Mingzhe Wu, Wen Yu, Ming Zheng, Tengfei Liu,
Tianyi Zhang, Weiqiang Wang
- Abstract要約: 生存回帰のための強力なフレキシブルなニューラル・モデリング・フレームワークであるニューラル・フラリティ・マシン(NFM)を提案する。
2つの具体的なモデルは、ニューラル比例ハザードモデルと非ハザード回帰モデルを拡張する枠組みに基づいて導出される。
我々は,異なるスケールのベンチマークデータセットを6ドル以上で評価し,提案したNAMモデルは予測性能において最先端サバイバルモデルより優れていることを示す。
- 参考スコア(独自算出の注目度): 20.911699010309036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present neural frailty machine (NFM), a powerful and flexible neural
modeling framework for survival regressions. The NFM framework utilizes the
classical idea of multiplicative frailty in survival analysis to capture
unobserved heterogeneity among individuals, at the same time being able to
leverage the strong approximation power of neural architectures for handling
nonlinear covariate dependence. Two concrete models are derived under the
framework that extends neural proportional hazard models and nonparametric
hazard regression models. Both models allow efficient training under the
likelihood objective. Theoretically, for both proposed models, we establish
statistical guarantees of neural function approximation with respect to
nonparametric components via characterizing their rate of convergence.
Empirically, we provide synthetic experiments that verify our theoretical
statements. We also conduct experimental evaluations over $6$ benchmark
datasets of different scales, showing that the proposed NFM models outperform
state-of-the-art survival models in terms of predictive performance. Our code
is publicly availabel at https://github.com/Rorschach1989/nfm
- Abstract(参考訳): 我々は,生存回帰のための強力で柔軟なニューラルネットワークモデリングフレームワークであるneural frailty machine(nfm)を提案する。
NFMフレームワークは、生存分析における乗法的欠陥という古典的な考え方を利用して、個人間の不均一性を捉えると同時に、非線形共変量依存を扱うためにニューラルネットワークの強い近似力を利用することができる。
2つの具体的なモデルは、神経比例ハザードモデルと非パラメトリックハザード回帰モデルを拡張する枠組みの下で導出される。
どちらのモデルも、潜在的目的の下で効率的なトレーニングを可能にする。
理論的には,両モデルとも,その収束率を特徴付けることにより,非パラメトリック成分に対する神経関数近似の統計的保証を確立する。
理論的ステートメントを検証するための合成実験を経験的に提供する。
また、様々なスケールのベンチマークデータセットを6ドル以上にわたって実験的に評価し、提案するnfmモデルが予測性能の点で最先端のサバイバルモデルを上回ることを示した。
私たちのコードはhttps://github.com/Rorschach1989/nfmで公開されています
関連論文リスト
- How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression [2.9873759776815527]
逆流変換(DRIFT)を用いた分布回帰の枠組みを提案する。
DRIFTは解釈可能な統計モデルと柔軟なニューラルネットワークの両方をカバーする。
論文 参考訳(メタデータ) (2024-05-08T21:19:18Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - The Surprising Harmfulness of Benign Overfitting for Adversarial
Robustness [13.120373493503772]
根拠的真理そのものが敵の例に対して堅牢であるとしても、標準のアウト・オブ・サンプルのリスク目標の観点から見れば、明らかに過適合なモデルは良性である、という驚くべき結果が証明されます。
我々の発見は、実際に観察されたパズリング現象に関する理論的洞察を与え、真の標的関数(例えば、人間)は副次的攻撃に対して堅牢であり、一方、当初過適合のニューラルネットワークは、堅牢でないモデルに導かれる。
論文 参考訳(メタデータ) (2024-01-19T15:40:46Z) - Exploring hyperelastic material model discovery for human brain cortex:
multivariate analysis vs. artificial neural network approaches [10.003764827561238]
本研究の目的は、ヒト脳組織において最も好ましい物質モデルを特定することである。
我々は、広く受け入れられている古典モデルの一般化に、人工ニューラルネットワークと多重回帰法を適用した。
論文 参考訳(メタデータ) (2023-10-16T18:49:59Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Robust Neural Posterior Estimation and Statistical Model Criticism [1.5749416770494706]
モデラーはシミュレータを真のデータ生成プロセスの理想主義的な表現として扱わなければならない。
本研究では,シミュレーションモデルにおけるブラックボックスパラメータ推論を可能にするアルゴリズムのクラスであるNPEを再検討する。
一方,NPEを経時的に用いた場合,不特定性の存在は信頼できない推論につながることが判明した。
論文 参考訳(メタデータ) (2022-10-12T20:06:55Z) - Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output [1.4298334143083322]
シミュレータに基づく統計モデルに対する自由な推論は、機械学習と統計のコミュニティの両方において、関心の高まりを招いている。
本稿では、Jensen-Shannon- divergenceの計算特性を用いて、モデルパラメータに対する推定、仮説テスト、信頼区間の構築を可能にする理論的結果のセットを導出する。
このような近似はより集中的なアプローチの素早い代替手段であり、シミュレーターベースモデルの多種多様な応用には魅力的である。
論文 参考訳(メタデータ) (2022-05-22T18:00:13Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。