論文の概要: Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural
Networks
- arxiv url: http://arxiv.org/abs/2303.10455v1
- Date: Sat, 18 Mar 2023 16:45:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 19:08:58.811414
- Title: Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural
Networks
- Title(参考訳): learn, unlearn and relearn: ディープニューラルネットワークのためのオンライン学習パラダイム
- Authors: Vijaya Raghavan T. Ramkumar, Elahe Arani, Bahram Zonooz
- Abstract要約: 我々は、ディープニューラルネットワーク(DNN)のためのオンライン学習パラダイムであるLearning, Unlearn, and Relearn(LURE)を紹介する。
LUREは、モデルの望ましくない情報を選択的に忘れる未学習フェーズと、一般化可能な特徴の学習を強調する再学習フェーズとを交換する。
トレーニングパラダイムは、分類と少数ショット設定の両方において、データセット間で一貫したパフォーマンス向上を提供します。
- 参考スコア(独自算出の注目度): 12.525959293825318
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep neural networks (DNNs) are often trained on the premise that the
complete training data set is provided ahead of time. However, in real-world
scenarios, data often arrive in chunks over time. This leads to important
considerations about the optimal strategy for training DNNs, such as whether to
fine-tune them with each chunk of incoming data (warm-start) or to retrain them
from scratch with the entire corpus of data whenever a new chunk is available.
While employing the latter for training can be resource-intensive, recent work
has pointed out the lack of generalization in warm-start models. Therefore, to
strike a balance between efficiency and generalization, we introduce Learn,
Unlearn, and Relearn (LURE) an online learning paradigm for DNNs. LURE
interchanges between the unlearning phase, which selectively forgets the
undesirable information in the model through weight reinitialization in a
data-dependent manner, and the relearning phase, which emphasizes learning on
generalizable features. We show that our training paradigm provides consistent
performance gains across datasets in both classification and few-shot settings.
We further show that it leads to more robust and well-calibrated models.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、完全なトレーニングデータセットが事前に提供されるという前提でトレーニングされることが多い。
しかし、現実のシナリオでは、データは時間とともにチャンクになることが多い。
これは、DNNをトレーニングするための最適な戦略に関する重要な考慮につながります。例えば、受信したデータ(ウォームスタート)の各チャンクでそれらを微調整するか、新しいチャンクが利用可能であるたびに、データのコーパス全体をスクラッチから再トレーニングするか、などです。
トレーニングに後者を採用することはリソース集約的であるが、最近の研究はウォームスタートモデルにおける一般化の欠如を指摘している。
そこで我々は,効率性と一般化のバランスをとるために,DNNのためのオンライン学習パラダイムであるLearning,Unlearn,Relearn(LURE)を紹介する。
LUREは、データ依存的なウェイトリチベーションを通じてモデルの望ましくない情報を選択的に忘れる未学習フェーズと、一般化可能な特徴の学習を強調する再学習フェーズとを交換する。
当社のトレーニングパラダイムは、分類と少数ショット設定の両方において、データセット間で一貫したパフォーマンス向上を提供します。
さらに、より堅牢で校正されたモデルにつながることを示す。
関連論文リスト
- Learning to Continually Learn with the Bayesian Principle [36.75558255534538]
本研究では、ニューラルネットワークの強力な表現力と、忘れることに対する単純な統計モデルの堅牢性を組み合わせたメタラーニングパラダイムを採用する。
ニューラルネットワークは継続学習中に固定されているため、破滅的な忘れ物から保護されている。
論文 参考訳(メタデータ) (2024-05-29T04:53:31Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Relearning Forgotten Knowledge: on Forgetting, Overfit and Training-Free
Ensembles of DNNs [9.010643838773477]
本稿では,検証データ上での深層モデルの忘れ度をモニタする,過剰適合度定量化のための新しいスコアを提案する。
オーバーフィットは検証精度を低下させることなく発生しうることを示し,従来よりも一般的である可能性が示唆された。
我々は,1つのネットワークのトレーニング履歴のみに基づいて,新たなアンサンブル法を構築するために,我々の観測結果を用いて,トレーニング時間に追加のコストを要さず,大幅な改善を実現する。
論文 参考訳(メタデータ) (2023-10-17T09:22:22Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - Efficient Augmentation for Imbalanced Deep Learning [8.38844520504124]
本研究では、畳み込みニューラルネットワークの内部表現である不均衡画像データについて検討する。
モデルの特徴埋め込みとテストセットの一般化ギャップを測定し、マイノリティクラスではそのギャップが広いことを示す。
この洞察により、不均衡なデータのための効率的な3相CNNトレーニングフレームワークを設計できる。
論文 参考訳(メタデータ) (2022-07-13T09:43:17Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Reasoning-Modulated Representations [85.08205744191078]
タスクが純粋に不透明でないような共通的な環境について研究する。
我々のアプローチは、新しいデータ効率表現学習の道を開く。
論文 参考訳(メタデータ) (2021-07-19T13:57:13Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
事前訓練されたモデルを用いたディープ畳み込みニューラルネットワーク(CNN)の微調整は、より大きなデータセットから学習した知識をターゲットタスクに転送するのに役立つ。
転送学習環境におけるバックプロパゲーションを深める戦略であるRIFLEを提案する。
RIFLEは、深いCNN層の重み付けに意味のあるアップデートをもたらし、低レベルの機能学習を改善する。
論文 参考訳(メタデータ) (2020-07-07T11:27:43Z) - Neural Network Retraining for Model Serving [32.857847595096025]
我々は、推論における新しいデータの継続的な流れに対応するために、ニューラルネットワークモデルの漸進的(再)トレーニングを提案する。
破滅的な再トレーニングと効率的な再トレーニングの2つの課題に対処する。
論文 参考訳(メタデータ) (2020-04-29T13:52:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。