GAM : Gradient Attention Module of Optimization for Point Clouds
Analysis
- URL: http://arxiv.org/abs/2303.10543v2
- Date: Tue, 21 Mar 2023 02:36:31 GMT
- Title: GAM : Gradient Attention Module of Optimization for Point Clouds
Analysis
- Authors: Haotian Hu, Fanyi Wang, Jingwen Su, Hongtao Zhou, Yaonong Wang,
Laifeng Hu, Yanhao Zhang, Zhiwang Zhang
- Abstract summary: In point cloud analysis tasks, the existing local feature aggregation descriptors (LFAD) are unable to fully utilize information in the neighborhood of central points.
We propose a gradient-based local attention module, termed as Gradient Attention Module (GAM) to address the aforementioned problem.
GAM achieves the best performance among current point-based models with mIoU/OA/mAcc of 74.4%/90.6%/83.2%, respectively.
- Score: 8.986123309626551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In point cloud analysis tasks, the existing local feature aggregation
descriptors (LFAD) are unable to fully utilize information in the neighborhood
of central points. Previous methods rely solely on Euclidean distance to
constrain the local aggregation process, which can be easily affected by
abnormal points and cannot adequately fit with the original geometry of the
point cloud. We believe that fine-grained geometric information (FGGI) is
significant for the aggregation of local features. Therefore, we propose a
gradient-based local attention module, termed as Gradient Attention Module
(GAM), to address the aforementioned problem. Our proposed GAM simplifies the
process that extracts gradient information in the neighborhood and uses the
Zenith Angle matrix and Azimuth Angle matrix as explicit representation, which
accelerates the module by 35X. Comprehensive experiments were conducted on five
benchmark datasets to demonstrate the effectiveness and generalization
capability of the proposed GAM for 3D point cloud analysis. Especially on S3DIS
dataset, GAM achieves the best performance among current point-based models
with mIoU/OA/mAcc of 74.4%/90.6%/83.2%, respectively.
Related papers
- On-the-fly Point Feature Representation for Point Clouds Analysis [7.074010861305738]
We propose On-the-fly Point Feature Representation (OPFR), which captures abundant geometric information explicitly through Curve Feature Generator module.
We also introduce the Local Reference Constructor module, which approximates the local coordinate systems based on triangle sets.
OPFR only requires extra 1.56ms for inference (65x faster than vanilla PFH) and 0.012M more parameters, and it can serve as a versatile plug-and-play module for various backbones.
arXiv Detail & Related papers (2024-07-31T04:57:06Z) - Point Deformable Network with Enhanced Normal Embedding for Point Cloud
Analysis [59.12922158979068]
Recently-based methods have shown strong performance in point cloud analysis.
Simple architectures are able to learn geometric features in local point groups yet fail to model long-range dependencies directly.
We propose Point Deformable Network (PDNet) to capture long-range relations with strong representation ability.
arXiv Detail & Related papers (2023-12-20T14:52:07Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - PointPatchMix: Point Cloud Mixing with Patch Scoring [58.58535918705736]
We propose PointPatchMix, which mixes point clouds at the patch level and generates content-based targets for mixed point clouds.
Our approach preserves local features at the patch level, while the patch scoring module assigns targets based on the content-based significance score from a pre-trained teacher model.
With Point-MAE as our baseline, our model surpasses previous methods by a significant margin, achieving 86.3% accuracy on ScanObjectNN and 94.1% accuracy on ModelNet40.
arXiv Detail & Related papers (2023-03-12T14:49:42Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - GPCO: An Unsupervised Green Point Cloud Odometry Method [64.86292006892093]
A lightweight point cloud odometry solution is proposed and named the green point cloud odometry (GPCO) method.
GPCO is an unsupervised learning method that predicts object motion by matching features of consecutive point cloud scans.
It is observed that GPCO outperforms benchmarking deep learning methods in accuracy while it has a significantly smaller model size and less training time.
arXiv Detail & Related papers (2021-12-08T00:24:03Z) - Exploiting Local Geometry for Feature and Graph Construction for Better
3D Point Cloud Processing with Graph Neural Networks [22.936590869919865]
We propose improvements in point representations and local neighborhood graph construction within the general framework of graph neural networks.
We show that the proposed network achieves faster training convergence, i.e. 40% less epochs for classification.
arXiv Detail & Related papers (2021-03-28T21:34:59Z) - Robust Kernel-based Feature Representation for 3D Point Cloud Analysis
via Circular Graph Convolutional Network [2.42919716430661]
We present a new local feature description method that is robust to rotation, density, and scale variations.
To improve representations of the local descriptors, we propose a global aggregation method.
Our method shows superior performances when compared to the state-of-the-art methods.
arXiv Detail & Related papers (2020-12-22T18:02:57Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z) - Airborne LiDAR Point Cloud Classification with Graph Attention
Convolution Neural Network [5.69168146446103]
We present a graph attention convolution neural network (GACNN) that can be directly applied to the classification of unstructured 3D point clouds obtained by airborne LiDAR.
Based on the proposed graph attention convolution module, we further design an end-to-end encoder-decoder network, named GACNN, to capture multiscale features of the point clouds.
Experiments on the ISPRS 3D labeling dataset show that the proposed model achieves a new state-of-the-art performance in terms of average F1 score (71.5%) and a satisfying overall accuracy (83.2%)
arXiv Detail & Related papers (2020-04-20T05:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.