論文の概要: ERSAM: Neural Architecture Search For Energy-Efficient and Real-Time
Social Ambiance Measurement
- arxiv url: http://arxiv.org/abs/2303.10727v1
- Date: Sun, 19 Mar 2023 18:08:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 17:37:58.639212
- Title: ERSAM: Neural Architecture Search For Energy-Efficient and Real-Time
Social Ambiance Measurement
- Title(参考訳): ERSAM: エネルギー効率とリアルタイムソーシャルアンビアンス測定のためのニューラルアーキテクチャ検索
- Authors: Chaojian Li, Wenwan Chen, Jiayi Yuan, Yingyan (Celine) Lin, Ashutosh
Sabharwal
- Abstract要約: エネルギー効率とリアルタイムSAM(ERSAM)のための専用ニューラルネットワーク探索フレームワークを提案する。
具体的には、当社のERSAMフレームワークは、モバイルSAMソリューションのハードウェア効率フロンティアに対して達成可能な精度を推し進めるDNNを自動的に検索することができる。
- 参考スコア(独自算出の注目度): 17.521809468907602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social ambiance describes the context in which social interactions happen,
and can be measured using speech audio by counting the number of concurrent
speakers. This measurement has enabled various mental health tracking and
human-centric IoT applications. While on-device Socal Ambiance Measure (SAM) is
highly desirable to ensure user privacy and thus facilitate wide adoption of
the aforementioned applications, the required computational complexity of
state-of-the-art deep neural networks (DNNs) powered SAM solutions stands at
odds with the often constrained resources on mobile devices. Furthermore, only
limited labeled data is available or practical when it comes to SAM under
clinical settings due to various privacy constraints and the required human
effort, further challenging the achievable accuracy of on-device SAM solutions.
To this end, we propose a dedicated neural architecture search framework for
Energy-efficient and Real-time SAM (ERSAM). Specifically, our ERSAM framework
can automatically search for DNNs that push forward the achievable accuracy vs.
hardware efficiency frontier of mobile SAM solutions. For example,
ERSAM-delivered DNNs only consume 40 mW x 12 h energy and 0.05 seconds
processing latency for a 5 seconds audio segment on a Pixel 3 phone, while only
achieving an error rate of 14.3% on a social ambiance dataset generated by
LibriSpeech. We can expect that our ERSAM framework can pave the way for
ubiquitous on-device SAM solutions which are in growing demand.
- Abstract(参考訳): ソーシャル・アンビアンス(social ambiance)は、社会的相互作用が起こるコンテキストを記述し、同時話者数を数えることで音声を用いて測定することができる。
この測定により、さまざまなメンタルヘルストラッキングと人間中心のIoTアプリケーションが可能になる。
デバイス上のSocal Ambiance Measure(SAM)は、ユーザのプライバシの確保と、前述のアプリケーションの広範な採用を促進するために非常に望ましいものだが、最先端のディープニューラルネットワーク(DNN)を使用したSAMソリューションに必要な計算複雑性は、モバイルデバイス上の制約の多いリソースとは相反する。
さらに、様々なプライバシの制約と必要な人的努力により、SAMの臨床的設定下において限られたラベル付きデータのみが利用可能または実用的であり、オンデバイスSAMソリューションの達成可能な正確性に挑戦する。
そこで本研究では,エネルギー効率とリアルタイムSAM(ERSAM)のためのニューラルネットワーク検索フレームワークを提案する。
具体的には、当社のERSAMフレームワークは、モバイルSAMソリューションのハードウェア効率フロンティアに対して達成可能な精度を推し進めるDNNを自動的に検索することができる。
例えば、ERSAMが配信するDNNは、Pixel 3の5秒の音声セグメントで40mW x 12hエネルギーと0.05秒の処理レイテンシしか消費せず、LibriSpeechが生成した社会環境データセットでは14.3%のエラー率しか達成していない。
当社のERSAMフレームワークは、需要が増大しているデバイス上のSAMソリューションをユビキタスに構築できることを期待しています。
関連論文リスト
- SAMPa: Sharpness-aware Minimization Parallelized [51.668052890249726]
シャープネス認識(SAM)はニューラルネットワークの一般化を改善することが示されている。
SAMの更新には2つの勾配を瞬時に計算する必要がある。
我々は,SAMPaと呼ばれるSAMの簡単な修正を提案し,この2つの勾配計算を完全に並列化することができる。
論文 参考訳(メタデータ) (2024-10-14T16:21:23Z) - Privacy-Preserving SAM Quantization for Efficient Edge Intelligence in Healthcare [9.381558154295012]
Segment Anything Model (SAM) はインテリジェントなイメージセグメンテーションに優れている。
SAMはリソース制限されたエッジデバイスにデプロイする上で大きな課題となる。
本研究では,原データなしで量子化パラメータを学習・校正する DFQ-SAM という,SAM のためのデータフリー量子化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-14T10:43:35Z) - Towards Sustainable Personalized On-Device Human Activity Recognition with TinyML and Cloud-Enabled Auto Deployment [6.9604565273682955]
この研究は、オンデバイスのTinyML駆動コンピューティングとクラウド対応の自動デプロイを組み合わせた新しい組み合わせによって、課題に対処するために設計された、手首のスマートバンドを導入している。
アクティビティクラスを、最小限のキャリブレーションで独自のムーブメントスタイルに調整することができる。
システムはパーソナライズされた設定において、一般化されたモデルよりも精度が37%向上する。
論文 参考訳(メタデータ) (2024-08-26T13:28:41Z) - Lite-SAM Is Actually What You Need for Segment Everything [4.696541976769272]
Lite-SAMはSegEveryタスクの効率的なエンドツーエンドソリューションである。
Lite-SAMは4つの主要コンポーネントで構成されている: 合理化されたCNN-Transformerハイブリッドエンコーダ(LiteViT)、自動プロンプトプロポーザルネットワーク(AutoPPN)。
論文 参考訳(メタデータ) (2024-07-12T03:28:46Z) - HRSAM: Efficient Interactive Segmentation in High-Resolution Images [59.537068118473066]
Segment Anything Model (SAM) は高度な対話的セグメンテーションを持つが、高解像度画像の計算コストによって制限される。
本稿では,視覚長外挿に着目し,HRSAMという軽量モデルを提案する。
この外挿により、HRSAMは低分解能で訓練され、高分解能に一般化できる。
論文 参考訳(メタデータ) (2024-07-02T09:51:56Z) - Stable Segment Anything Model [79.9005670886038]
SAM(Segment Anything Model)は、高品質なプロンプトが与えられた場合、顕著に迅速なセグメンテーションを実現する。
本稿では,SAMのセグメンテーション安定性について,多様なプロンプト特性のスペクトルにわたって包括的解析を行った。
1)SAMのセグメンテーション安定性を広範囲に改善し,2)SAMの強力なセグメンテーション効率と一般化を維持した。
論文 参考訳(メタデータ) (2023-11-27T12:51:42Z) - Many-to-One Knowledge Distillation of Real-Time Epileptic Seizure
Detection for Low-Power Wearable Internet of Things Systems [6.90334498220711]
低消費電力のウェアラブルIoTシステムと定期的な健康モニタリングを統合することは、現在進行中の課題である。
ウェアラブルの計算能力の最近の進歩により、複数のバイオシグナーを利用する複雑なシナリオをターゲットにすることが可能になった。
身体的に大きく、バイオシグナーをベースとしたウェアラブルは、患者にとって大きな不快感をもたらす。
本稿では,IoTウェアラブルシステムにおける単一生体信号処理を対象とした多対一信号の知識蒸留手法を提案する。
論文 参考訳(メタデータ) (2022-07-20T12:22:26Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Reinforcement Learning for Minimizing Age of Information in Real-time
Internet of Things Systems with Realistic Physical Dynamics [158.67956699843168]
本稿では,インターネット・オブ・モノ(IoT)デバイスにおける情報量(AoI)と総エネルギー消費の重み付けを最小化する問題について検討する。
サンプリングポリシを最適化するために,分散強化学習手法を提案する。
PM 2.5公害の実データを用いたシミュレーションでは、提案アルゴリズムがAoIの合計を最大17.8%および33.9%削減できることが示された。
論文 参考訳(メタデータ) (2021-04-04T03:17:26Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。