論文の概要: Lite-SAM Is Actually What You Need for Segment Everything
- arxiv url: http://arxiv.org/abs/2407.08965v1
- Date: Fri, 12 Jul 2024 03:28:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 00:56:38.759703
- Title: Lite-SAM Is Actually What You Need for Segment Everything
- Title(参考訳): Lite-SAMは、あらゆるセグメンテーションに必要なもの
- Authors: Jianhai Fu, Yuanjie Yu, Ningchuan Li, Yi Zhang, Qichao Chen, Jianping Xiong, Jun Yin, Zhiyu Xiang,
- Abstract要約: Lite-SAMはSegEveryタスクの効率的なエンドツーエンドソリューションである。
Lite-SAMは4つの主要コンポーネントで構成されている: 合理化されたCNN-Transformerハイブリッドエンコーダ(LiteViT)、自動プロンプトプロポーザルネットワーク(AutoPPN)。
- 参考スコア(独自算出の注目度): 4.696541976769272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces Lite-SAM, an efficient end-to-end solution for the SegEvery task designed to reduce computational costs and redundancy. Lite-SAM is composed of four main components: a streamlined CNN-Transformer hybrid encoder (LiteViT), an automated prompt proposal network (AutoPPN), a traditional prompt encoder, and a mask decoder. All these components are integrated within the SAM framework. Our LiteViT, a high-performance lightweight backbone network, has only 1.16M parameters, which is a 23% reduction compared to the lightest existing backbone network Shufflenet. We also introduce AutoPPN, an innovative end-to-end method for prompt boxes and points generation. This is an improvement over traditional grid search sampling methods, and its unique design allows for easy integration into any SAM series algorithm, extending its usability. we have thoroughly benchmarked Lite-SAM across a plethora of both public and private datasets. The evaluation encompassed a broad spectrum of universal metrics, including the number of parameters, SegEvery execution time, and accuracy. The findings reveal that Lite-SAM, operating with a lean 4.2M parameters, significantly outpaces its counterparts, demonstrating performance improvements of 43x, 31x, 20x, 21x, and 1.6x over SAM, MobileSAM, Edge-SAM, EfficientViT-SAM, and MobileSAM-v2 respectively, all the while maintaining competitive accuracy. This underscores Lite-SAM's prowess in achieving an optimal equilibrium between performance and precision, thereby setting a new state-of-the-art(SOTA) benchmark in the domain.
- Abstract(参考訳): 本稿では、計算コストと冗長性を低減するために設計されたSegEveryタスクの効率的なエンドツーエンドソリューションであるLite-SAMを紹介する。
Lite-SAMは、CNN-Transformerハイブリッドエンコーダ(LiteViT)、自動プロンプトプロポーザルネットワーク(AutoPPN)、従来のプロンプトエンコーダ、マスクデコーダの4つの主要コンポーネントで構成されている。
これらのコンポーネントはすべてSAMフレームワークに統合されます。
我々のLiteViTは、高性能で軽量なバックボーンネットワークであり、1.16Mのパラメータしか持たない。
また,AutoPPNを導入し,プロンプトボックスとポイント生成のための革新的なエンドツーエンド手法を提案する。
これは従来のグリッドサーチサンプリング法よりも改善され、そのユニークな設計により、SAMシリーズのアルゴリズムに容易に統合でき、使い勝手を向上させることができる。
公開データセットとプライベートデータセットの両方で、Lite-SAMを徹底的にベンチマークしました。
評価には、パラメータの数、SegEveryの実行時間、精度など、幅広い普遍的な指標が含まれていた。
その結果、Lite-SAMはリーン4.2Mパラメータで動作しており、SAM、MobileSAM、Edge-SAM、EfficientViT-SAM、MobileSAM-v2よりも43x、31x、20x、21x、1.6xのパフォーマンス改善を示しながら、競争の正確さを維持していることがわかった。
これにより、Lite-SAMは、パフォーマンスと精度の最適な均衡を達成し、ドメインに新しい最先端(SOTA)ベンチマークを設定できる。
関連論文リスト
- Asymptotic Unbiased Sample Sampling to Speed Up Sharpness-Aware Minimization [17.670203551488218]
シャープネス認識最小化(AUSAM)を加速する漸近的アンバイアスサンプリングを提案する。
AUSAMはモデルの一般化能力を維持しながら、計算効率を大幅に向上させる。
プラグアンドプレイでアーキテクチャに依存しない手法として、我々のアプローチはSAMを様々なタスクやネットワークで継続的に加速させる。
論文 参考訳(メタデータ) (2024-06-12T08:47:44Z) - WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images [8.179859593451285]
病理画像の正確なオブジェクト分割機能を備えたWSI-SAM, Segment Anything Model (SAM) を提案する。
トレーニングオーバーヘッドを最小限にしながら、トレーニング済みの知識を完全に活用するために、SAMは凍結し、最小限のパラメータしか導入しません。
本モデルでは, 膵管癌 in situ (DCIS) セグメンテーションタスクと乳癌転移セグメンテーションタスクにおいて, SAMを4.1, 2.5パーセント上回った。
論文 参考訳(メタデータ) (2024-03-14T10:30:43Z) - SAM-Lightening: A Lightweight Segment Anything Model with Dilated Flash Attention to Achieve 30 times Acceleration [6.515075311704396]
Segment Anything Model (SAM)は、ゼロショットの一般化能力のためにセグメンテーションタスクに大きな注目を集めている。
我々はSAMの亜種であるSAM-Lighteningを紹介し、Dilated Flash Attentionと呼ばれる再設計されたアテンション機構を特徴としている。
COCOとLVISの実験により、SAM-Lighteningは実行時の効率とセグメンテーション精度の両方において最先端の手法よりも大幅に優れていることが明らかになった。
論文 参考訳(メタデータ) (2024-03-14T09:07:34Z) - TinySAM: Pushing the Envelope for Efficient Segment Anything Model [76.21007576954035]
我々は,強力なゼロショット性能を維持しつつ,小さなセグメントの任意のモデル(TinySAM)を得るためのフレームワークを提案する。
本研究は,まず,軽量学生モデルを蒸留するためのハードプロンプトサンプリングとハードマスク重み付け戦略を用いた,フルステージの知識蒸留法を提案する。
また、学習後の量子化を高速化可能なセグメンテーションタスクに適用し、計算コストをさらに削減する。
論文 参考訳(メタデータ) (2023-12-21T12:26:11Z) - EdgeSAM: Prompt-In-the-Loop Distillation for On-Device Deployment of SAM [71.868623296582]
EdgeSAMはSegment Anything Model (SAM)の高速化版である。
我々のアプローチは、VTベースのSAMイメージエンコーダを純粋にCNNベースのアーキテクチャに蒸留することである。
これは、iPhone 14で30FPS以上で動作可能なSAMの最初の派生機種である。
論文 参考訳(メタデータ) (2023-12-11T18:59:52Z) - Stable Segment Anything Model [79.9005670886038]
SAM(Segment Anything Model)は、高品質なプロンプトが与えられた場合、顕著に迅速なセグメンテーションを実現する。
本稿では,SAMのセグメンテーション安定性について,多様なプロンプト特性のスペクトルにわたって包括的解析を行った。
1)SAMのセグメンテーション安定性を広範囲に改善し,2)SAMの強力なセグメンテーション効率と一般化を維持した。
論文 参考訳(メタデータ) (2023-11-27T12:51:42Z) - Improving Sharpness-Aware Minimization with Fisher Mask for Better
Generalization on Language Models [93.85178920914721]
限られた訓練コーパス上の微調整された大きな事前訓練された言語モデルは、通常、計算の貧弱さに悩まされる。
本稿では,新しい最適化手法であるFSAMを提案し,SAMの効率と性能を改善するためにフィッシャーマスクを導入した。
FSAMは4種類の事前訓練モデルにおいて,バニラSAMの平均スコア0.671.98を上回っていることを示す。
論文 参考訳(メタデータ) (2022-10-11T14:53:58Z) - Towards Efficient and Scalable Sharpness-Aware Minimization [81.22779501753695]
内部勾配の上昇を周期的に計算する新しいアルゴリズム LookSAM を提案する。
LookSAMはSAMと同じような精度を実現し、非常に高速である。
Vision Transformer(ViTs)のトレーニングでバッチサイズのスケールアップに成功したのは,私たちが初めてです。
論文 参考訳(メタデータ) (2022-03-05T11:53:37Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
本稿では,SAM s の効率を高コストで向上する高効率シャープネス認識最小化器 (M) を提案する。
Mには、Stochastic Weight PerturbationとSharpness-Sensitive Data Selectionという、2つの新しい効果的なトレーニング戦略が含まれている。
我々は、CIFARとImageNetデータセットの広範な実験を通して、ESAMはSAMよりも100%余分な計算を40%のvis-a-visベースに必要とせずに効率を向上させることを示した。
論文 参考訳(メタデータ) (2021-10-07T02:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。