MIA-3DCNN: COVID-19 Detection Based on a 3D CNN
- URL: http://arxiv.org/abs/2303.10738v1
- Date: Sun, 19 Mar 2023 18:55:22 GMT
- Title: MIA-3DCNN: COVID-19 Detection Based on a 3D CNN
- Authors: Igor Kenzo Ishikawa Oshiro Nakashima, Giovanna Vendramini, Helio
Pedrini
- Abstract summary: Convolutional neural networks have been widely used to detect pneumonia caused by COVID-19 in lung images.
This work describes an architecture based on 3D convolutional neural networks for detecting COVID-19 in computed tomography images.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early and accurate diagnosis of COVID-19 is essential to control the rapid
spread of the pandemic and mitigate sequelae in the population. Current
diagnostic methods, such as RT-PCR, are effective but require time to provide
results and can quickly overwhelm clinics, requiring individual laboratory
analysis. Automatic detection methods have the potential to significantly
reduce diagnostic time. To this end, learning-based methods using lung imaging
have been explored. Although they require specialized hardware, automatic
evaluation methods can be performed simultaneously, making diagnosis faster.
Convolutional neural networks have been widely used to detect pneumonia caused
by COVID-19 in lung images. This work describes an architecture based on 3D
convolutional neural networks for detecting COVID-19 in computed tomography
images. Despite the challenging scenario present in the dataset, the results
obtained with our architecture demonstrated to be quite promising.
Related papers
- Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
We present an innovative model that harnesses the strengths of both convolutional neural networks and vision transformers.
Inspired by object detection in videos, we treat each 3D CT image as a video, individual slices as frames, and lung nodules as objects, enabling a time-series application.
arXiv Detail & Related papers (2023-10-05T07:48:55Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - The interpretation of endobronchial ultrasound image using 3D
convolutional neural network for differentiating malignant and benign
mediastinal lesions [3.0969191504482247]
The purpose of this study is to differentiate malignant and benign lesions by using endobronchial ultrasound (EBUS) image.
Our model is robust to noise and able to fuse various imaging features and aspiration of EBUS videos.
arXiv Detail & Related papers (2021-07-29T08:38:17Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Automatic Detection of COVID-19 Cases on X-ray images Using
Convolutional Neural Networks [0.0]
This research aims to automate the process of detecting COVID-19 cases from chest images.
All databases used, the codes built, and the results obtained from the models' training are available for open access.
arXiv Detail & Related papers (2020-07-02T00:46:13Z) - Momentum Contrastive Learning for Few-Shot COVID-19 Diagnosis from Chest
CT Images [41.73507451077361]
We propose a new deep learning algorithm for the automated diagnosis of COVID-19, which only requires a few samples for training.
We use contrastive learning to train an encoder which can capture expressive feature representations on large and publicly available lung datasets.
Our results demonstrate the superior performance of our model for the accurate diagnosis of COVID-19 based on chest CT images.
arXiv Detail & Related papers (2020-06-16T10:14:58Z) - Diagnosing COVID-19 Pneumonia from X-Ray and CT Images using Deep
Learning and Transfer Learning Algorithms [8.697183191483571]
COVID-19 (also known as 2019 Novel Coronavirus) first emerged in Wuhan, China and spread across the globe with unprecedented effect.
This study aims to build a comprehensive dataset of X-rays and CT scan images from multiple sources.
In this vein, a simple convolution neural network (CNN) and modified pre-trained AlexNet model are applied on the prepared X-rays and CT scan images dataset.
arXiv Detail & Related papers (2020-03-31T18:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.