Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet
- URL: http://arxiv.org/abs/2310.03365v2
- Date: Sat, 14 Oct 2023 05:57:03 GMT
- Title: Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet
- Authors: Hossein Jafari, Karim Faez, Hamidreza Amindavar
- Abstract summary: We present an innovative model that harnesses the strengths of both convolutional neural networks and vision transformers.
Inspired by object detection in videos, we treat each 3D CT image as a video, individual slices as frames, and lung nodules as objects, enabling a time-series application.
- Score: 2.7547288571938795
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Lung cancer is highly lethal, emphasizing the critical need for early
detection. However, identifying lung nodules poses significant challenges for
radiologists, who rely heavily on their expertise for accurate diagnosis. To
address this issue, computer-aided diagnosis (CAD) systems based on machine
learning techniques have emerged to assist doctors in identifying lung nodules
from computed tomography (CT) scans. Unfortunately, existing networks in this
domain often suffer from computational complexity, leading to high rates of
false negatives and false positives, limiting their effectiveness. To address
these challenges, we present an innovative model that harnesses the strengths
of both convolutional neural networks and vision transformers. Inspired by
object detection in videos, we treat each 3D CT image as a video, individual
slices as frames, and lung nodules as objects, enabling a time-series
application. The primary objective of our work is to overcome hardware
limitations during model training, allowing for efficient processing of 2D data
while utilizing inter-slice information for accurate identification based on 3D
image context. We validated the proposed network by applying a 10-fold
cross-validation technique to the publicly available Lung Nodule Analysis 2016
dataset. Our proposed architecture achieves an average sensitivity criterion of
97.84% and a competition performance metrics (CPM) of 96.0% with few
parameters. Comparative analysis with state-of-the-art advancements in lung
nodule identification demonstrates the significant accuracy achieved by our
proposed model.
Related papers
- High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
Lung cancer has been one of the leading causes of cancer-related deaths worldwide for years.
Deep learning, computer-assisted diagnosis (CAD) models based on learning algorithms can accelerate the screening process.
However, developing robust and accurate models often requires large-scale and diverse medical datasets with high-quality annotations.
arXiv Detail & Related papers (2023-05-02T01:04:22Z) - Identification of lung nodules CT scan using YOLOv5 based on convolution
neural network [0.0]
This study was to identify the nodule that were developing in the lungs of the participants.
One-stage detector YOLOv5 trained on 280 CT SCAN from a public dataset LIDC-IDRI based on segmented pulmonary nodules.
arXiv Detail & Related papers (2022-12-31T17:31:22Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
COVID-19 diagnosis can now be done efficiently using PCR tests, but this use case exemplifies the need for a methodology to overcome data variability issues.
We propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans.
arXiv Detail & Related papers (2022-08-19T15:49:47Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
Early detection of lung nodules with computed tomography (CT) is critical for the longer survival of lung cancer patients and better quality of life.
Computer-aided detection/diagnosis (CAD) is proven valuable as a second or concurrent reader in this context.
accurate detection of lung nodules remains a challenge for such CAD systems and even radiologists due to variability in size, location, and appearance of lung nodules.
Motivated by recent computer vision techniques, here we present a self-supervised region-based 3D transformer model to identify lung nodules.
arXiv Detail & Related papers (2022-04-30T01:19:00Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Effect of Input Size on the Classification of Lung Nodules Using
Convolutional Neural Networks [0.12891210250935145]
Lung cancer screening using annual low-dose computed tomography (CT) reduces lung cancer mortality by 20% compared to traditional chest radiography.
The number of slices in a CT scan can be up to 600. Therefore, computer-aided-detection (CAD) systems are very important for faster and more accurate assessment of the data.
In this study, we proposed a framework that analyzes CT lung screenings using convolutional neural networks (CNNs) to reduce false positives.
arXiv Detail & Related papers (2021-07-11T16:52:30Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.