論文の概要: Learning to Explore Informative Trajectories and Samples for Embodied
Perception
- arxiv url: http://arxiv.org/abs/2303.10936v1
- Date: Mon, 20 Mar 2023 08:20:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 16:24:03.844977
- Title: Learning to Explore Informative Trajectories and Samples for Embodied
Perception
- Title(参考訳): 身体知覚のための情報的軌跡とサンプルの探索
- Authors: Ya Jing, Tao Kong
- Abstract要約: 未知の実施課題に対する知覚モデルの一般化は不十分である。
探索政策を自己管理する3次元意味分布マップを構築した。
そこで本研究では, 意味的分布の不確実性に基づいて, トラジェクトリのハードサンプルを選択することを提案する。
実験により,本手法で微調整した知覚モデルは,他の探索政策で訓練したベースラインよりも優れていた。
- 参考スコア(独自算出の注目度): 24.006056116516618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We are witnessing significant progress on perception models, specifically
those trained on large-scale internet images. However, efficiently generalizing
these perception models to unseen embodied tasks is insufficiently studied,
which will help various relevant applications (e.g., home robots). Unlike
static perception methods trained on pre-collected images, the embodied agent
can move around in the environment and obtain images of objects from any
viewpoints. Therefore, efficiently learning the exploration policy and
collection method to gather informative training samples is the key to this
task. To do this, we first build a 3D semantic distribution map to train the
exploration policy self-supervised by introducing the semantic distribution
disagreement and the semantic distribution uncertainty rewards. Note that the
map is generated from multi-view observations and can weaken the impact of
misidentification from an unfamiliar viewpoint. Our agent is then encouraged to
explore the objects with different semantic distributions across viewpoints, or
uncertain semantic distributions. With the explored informative trajectories,
we propose to select hard samples on trajectories based on the semantic
distribution uncertainty to reduce unnecessary observations that can be
correctly identified. Experiments show that the perception model fine-tuned
with our method outperforms the baselines trained with other exploration
policies. Further, we demonstrate the robustness of our method in real-robot
experiments.
- Abstract(参考訳): 私たちは知覚モデル、特に大規模なインターネット画像のトレーニングにおいて、大きな進歩を目の当たりにしています。
しかし、これらの知覚モデルを非表示の実施タスクに効率的に一般化することは不十分であり、様々な応用(例えばホームロボット)に役立つ。
事前収集された画像で訓練された静的な知覚方法とは異なり、体化エージェントは環境内を動き回り、任意の視点から物体のイメージを得ることができる。
そのため,調査方針や収集手法を効率的に学習し,有意義なトレーニングサンプルを収集することが課題の鍵となる。
そこで我々はまず,意味分布の不一致と意味分布の不確実性報酬を導入することで,探索政策を自己指導する3D意味分布マップを構築した。
地図は多視点観測から生成され、見慣れない視点から誤同定の影響を弱めることができる。
エージェントは、視点や不確実な意味分布にまたがる異なる意味分布を持つオブジェクトを探索することが推奨される。
そこで本研究では, 意味分布の不確実性に基づいて, 軌道上のハードサンプルを選択することで, 正しく同定できる不要な観察を減らすことを提案する。
実験により,本手法で微調整した知覚モデルは,他の探索政策で訓練したベースラインよりも優れていた。
さらに,本手法のロバスト性を実ロボット実験で実証する。
関連論文リスト
- Zero-Shot Object-Centric Representation Learning [72.43369950684057]
ゼロショット一般化のレンズによる現在の対象中心法について検討する。
8つの異なる合成および実世界のデータセットからなるベンチマークを導入する。
多様な実世界の画像のトレーニングにより、見えないシナリオへの転送性が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-17T10:37:07Z) - Self-Supervised Representation Learning for Adversarial Attack Detection [6.528181610035978]
教師付き学習に基づく敵攻撃検出手法は,多数のラベル付きデータに依存している。
この欠点に対処するために、敵攻撃検出タスクのための自己教師付き表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T09:37:16Z) - Revisiting Self-supervised Learning of Speech Representation from a
Mutual Information Perspective [68.20531518525273]
我々は、情報理論の観点から、既存の自己教師型音声の手法を詳しく検討する。
我々は線形プローブを用いて、対象情報と学習された表現の間の相互情報を推定する。
我々は、ラベルを使わずに、データの異なる部分間の相互情報を見積もる自己教師型の表現を評価する可能性を探る。
論文 参考訳(メタデータ) (2024-01-16T21:13:22Z) - Uncovering Unique Concept Vectors through Latent Space Decomposition [0.0]
概念に基づく説明は、特徴帰属推定よりも解釈可能な優れたアプローチとして現れてきた。
本稿では,訓練中に深層モデルから学んだ概念を自動的に発見するポストホックな教師なし手法を提案する。
実験の結果、我々の概念の大部分は、人間にとって容易に理解でき、一貫性を示し、目の前の課題に関連があることが判明した。
論文 参考訳(メタデータ) (2023-07-13T17:21:54Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
我々は,ロボット探索を導くための視覚能力の学習手法を開発した。
VQ-VAEの潜伏埋め込み空間における条件分布の学習にはTransformerベースのモデルを用いる。
本稿では,ロボット操作における視覚的目標条件付きポリシー学習において,目標サンプリング分布として機能することで探索を導くために,トレーニングされた余裕モデルをどのように利用できるかを示す。
論文 参考訳(メタデータ) (2023-05-28T17:53:09Z) - From Patches to Objects: Exploiting Spatial Reasoning for Better Visual
Representations [2.363388546004777]
本研究では,空間的推論に基づく新しい予備的事前学習手法を提案する。
本提案手法は,識別的自己管理手法の補助的タスクとして空間推論を導入することで,より柔軟なコントラスト学習の定式化を実現する。
論文 参考訳(メタデータ) (2023-05-21T07:46:46Z) - Imitation from Observation With Bootstrapped Contrastive Learning [12.048166025000976]
IfO(IfO)は、マルコフ決定プロセスにおいて自律エージェントを訓練する学習パラダイムである。
本稿では,OfOアルゴリズムであるBootIfOLについて紹介する。
我々は,限られた数の実証軌道を用いて効果的な政策を訓練できることを示す,様々な制御タスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2023-02-13T17:32:17Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
本稿では,ポイントクラウド上で動作している深層知覚モデルのバックボーンを事前学習するための自己教師型手法を提案する。
中心となる考え方は、3Dポイントがサンプリングされる表面の再構成であるプリテキストタスクでモデルをトレーニングすることである。
直感的には、もしネットワークがわずかな入力ポイントのみを考慮し、シーン表面を再構築できるなら、おそらく意味情報の断片をキャプチャする。
論文 参考訳(メタデータ) (2022-12-12T13:10:19Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
自己監督型ランドマーク検出における既存の研究は、画像から高密度(ピクセルレベルの)特徴表現を学習することに基づいている。
自己教師付き方式で高密度同変表現の学習を強化するアプローチを提案する。
機能抽出器にそのような先行性があることは,アノテーションの数が大幅に制限されている場合でも,ランドマーク検出に役立ちます。
論文 参考訳(メタデータ) (2022-04-06T17:48:18Z) - Glimpse-Attend-and-Explore: Self-Attention for Active Visual Exploration [47.01485765231528]
アクティブな視覚探索は、限られた視野を持つエージェントが部分的な観察に基づいて環境を理解するのを支援することを目的としている。
タスク固有の不確実性マップではなく、自己注意を用いて視覚探索をガイドするGlimpse-Attend-and-Exploreモデルを提案する。
私たちのモデルは、探索を駆動する際のデータセットバイアスに頼らずに、奨励的な結果を提供します。
論文 参考訳(メタデータ) (2021-08-26T11:41:03Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
移動可能なカメラで撮影された単一の画像で、自己教師付き検出とセグメンテーションのアプローチを導入する。
我々は、提案に基づくセグメンテーションネットワークのトレーニングに利用する自己教師付き損失関数を利用する。
本手法は,標準ベンチマークから視覚的に切り離された画像の人間の検出とセグメント化に応用し,既存の自己監督手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-11T08:34:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。