論文の概要: Self-Supervised Representation Learning for Adversarial Attack Detection
- arxiv url: http://arxiv.org/abs/2407.04382v1
- Date: Fri, 5 Jul 2024 09:37:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 14:00:01.981420
- Title: Self-Supervised Representation Learning for Adversarial Attack Detection
- Title(参考訳): 逆攻撃検出のための自己教師付き表現学習
- Authors: Yi Li, Plamen Angelov, Neeraj Suri,
- Abstract要約: 教師付き学習に基づく敵攻撃検出手法は,多数のラベル付きデータに依存している。
この欠点に対処するために、敵攻撃検出タスクのための自己教師付き表現学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.528181610035978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised learning-based adversarial attack detection methods rely on a large number of labeled data and suffer significant performance degradation when applying the trained model to new domains. In this paper, we propose a self-supervised representation learning framework for the adversarial attack detection task to address this drawback. Firstly, we map the pixels of augmented input images into an embedding space. Then, we employ the prototype-wise contrastive estimation loss to cluster prototypes as latent variables. Additionally, drawing inspiration from the concept of memory banks, we introduce a discrimination bank to distinguish and learn representations for each individual instance that shares the same or a similar prototype, establishing a connection between instances and their associated prototypes. We propose a parallel axial-attention (PAA)-based encoder to facilitate the training process by parallel training over height- and width-axis of attention maps. Experimental results show that, compared to various benchmark self-supervised vision learning models and supervised adversarial attack detection methods, the proposed model achieves state-of-the-art performance on the adversarial attack detection task across a wide range of images.
- Abstract(参考訳): 教師付き学習ベース対向攻撃検出手法は、多数のラベル付きデータに依存し、トレーニングされたモデルを新しいドメインに適用する場合、大幅な性能低下を被る。
本稿では,この欠点に対処するために,敵攻撃検出タスクのための自己教師型表現学習フレームワークを提案する。
まず、拡張入力画像のピクセルを埋め込み空間にマッピングする。
そこで本研究では,クラスタのプロトタイプを潜在変数として,プロトタイプのコントラスト推定損失を用いる。
さらに、メモリバンクの概念からインスピレーションを得て、同一または類似のプロトタイプを共有する個々のインスタンスの表現を識別し、学習するための識別バンクを導入し、インスタンスと関連するプロトタイプ間の接続を確立する。
注意マップの高さ・幅軸を並列トレーニングすることでトレーニングプロセスを容易にする並列軸アテンション(PAA)ベースのエンコーダを提案する。
実験結果から,様々なベンチマークによる自己教師型視覚学習モデルや教師型対人攻撃検出手法と比較して,幅広い画像を対象とした対人攻撃検出タスクの最先端性能が得られた。
関連論文リスト
- Evaluating the Effectiveness of Attack-Agnostic Features for Morphing Attack Detection [20.67964977754179]
モーフィング攻撃検出(MAD)における画像表現の可能性について検討する。
ガウス混合モデル(GMM)によるボナフィド特性の分布をモデル化し,抽出した特徴量と一級検出値に基づいて単純な2次線形SVMを訓練し,教師付き検出器を開発する。
以上の結果から,攻撃非依存の特徴は,ほとんどのシナリオにおいて従来の教師付き・一級検知器よりも優れた形態的攻撃を効果的に検出できることが示唆された。
論文 参考訳(メタデータ) (2024-10-22T08:27:43Z) - Unsupervised Fingerphoto Presentation Attack Detection With Diffusion Models [8.979820109339286]
スマートフォンベースの非接触指紋認証は、従来のコンタクトベースの指紋生体認証システムに代わる信頼性の高い方法となっている。
その便利さにもかかわらず、指紋認証による指紋認証は、プレゼンテーション攻撃に対してより脆弱である。
我々は、最先端のディープラーニングに基づく拡散モデル、Denoising Probabilistic Diffusion Model (DDPM)に基づく新しい教師なしアプローチを提案する。
提案手法は,DDPMの入力対と出力対の再構成類似性を算出し,提示攻撃(PA)を検出する。
論文 参考訳(メタデータ) (2024-09-27T11:07:48Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Learning to Detect Adversarial Examples Based on Class Scores [0.8411385346896413]
我々は、すでに訓練済みの分類モデルのクラススコアに基づいて、敵の攻撃検出についてより詳しく検討する。
本稿では,SVM(Support Vector Machine)をクラススコアで学習し,逆例を検出することを提案する。
提案手法は,実装が容易でありながら,既存の手法と比較して検出率の向上を図っている。
論文 参考訳(メタデータ) (2021-07-09T13:29:54Z) - ExAD: An Ensemble Approach for Explanation-based Adversarial Detection [17.455233006559734]
説明手法のアンサンブルを用いて逆例を検出するフレームワークであるExADを提案する。
3つの画像データセットに対する6つの最先端の敵攻撃によるアプローチの評価を行った。
論文 参考訳(メタデータ) (2021-03-22T00:53:07Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
インスタンスローカリゼーションと呼ばれる,新たな自己監視型プリテキストタスクを提案する。
境界ボックスを事前学習に組み込むことで、より優れたタスクアライメントとアーキテクチャアライメントが促進されることを示す。
実験結果から, オブジェクト検出のための最先端の転送学習結果が得られた。
論文 参考訳(メタデータ) (2021-02-16T17:58:57Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
本稿では,最近導入された非破壊的特徴を動機とした新しい確率的対向検出器を提案する。
本稿では,非ロバスト特徴を逆例の共通性と考え,その性質に対応する表現空間におけるクラスターの探索が可能であることを推定する。
このアイデアは、別のクラスタ内の逆表現の確率推定分布を導出し、その分布を確率に基づく逆検出器として活用する。
論文 参考訳(メタデータ) (2020-12-07T07:21:18Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - CSI: Novelty Detection via Contrastive Learning on Distributionally
Shifted Instances [77.28192419848901]
コントラストシフトインスタンス (CSI) という,単純かつ効果的な手法を提案する。
従来のコントラスト学習法のように,サンプルを他の例と対比することに加えて,本トレーニング手法では,サンプルを分散シフトによる拡張と対比する。
本実験は, 種々の新規検出シナリオにおける本手法の優位性を実証する。
論文 参考訳(メタデータ) (2020-07-16T08:32:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。