論文の概要: Late Meta-learning Fusion Using Representation Learning for Time Series
Forecasting
- arxiv url: http://arxiv.org/abs/2303.11000v1
- Date: Mon, 20 Mar 2023 10:29:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 15:53:27.657445
- Title: Late Meta-learning Fusion Using Representation Learning for Time Series
Forecasting
- Title(参考訳): 時系列予測のための表現学習を用いた後期メタラーニング融合
- Authors: Terence L. van Zyl
- Abstract要約: 本研究は,これらの話題を包含する統合分類法を提案する。
この研究は、いくつかのモデル融合アプローチと、Deep-learning Forecast Model Averaging (DeFORMA)と呼ばれるハイブリッドおよび特徴積み重ねアルゴリズムの新たな組み合わせを実証的に評価した。
提案したモデルであるDeFORMAは、M4データセットで最先端の結果を得ることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Meta-learning, decision fusion, hybrid models, and representation learning
are topics of investigation with significant traction in time-series
forecasting research. Of these two specific areas have shown state-of-the-art
results in forecasting: hybrid meta-learning models such as Exponential
Smoothing - Recurrent Neural Network (ES-RNN) and Neural Basis Expansion
Analysis (N-BEATS) and feature-based stacking ensembles such as Feature-based
FORecast Model Averaging (FFORMA). However, a unified taxonomy for model fusion
and an empirical comparison of these hybrid and feature-based stacking ensemble
approaches is still missing. This study presents a unified taxonomy
encompassing these topic areas. Furthermore, the study empirically evaluates
several model fusion approaches and a novel combination of hybrid and feature
stacking algorithms called Deep-learning FORecast Model Averaging (DeFORMA).
The taxonomy contextualises the considered methods. Furthermore, the empirical
analysis of the results shows that the proposed model, DeFORMA, can achieve
state-of-the-art results in the M4 data set. DeFORMA, increases the mean
Overall Weighted Average (OWA) in the daily, weekly and yearly subsets with
competitive results in the hourly, monthly and quarterly subsets. The taxonomy
and empirical results lead us to argue that significant progress is still to be
made by continuing to explore the intersection of these research areas.
- Abstract(参考訳): メタラーニング、意思決定融合、ハイブリッドモデル、表現学習は、時系列予測研究において大きな牽引力を持つ研究のトピックである。
指数的平滑化 - recurrent neural network (es-rnn) や neural basis expansion analysis (n-beats) といったハイブリッドメタラーニングモデルと,機能ベースの予測モデル平均化 (fforma) などの機能ベースの積み重ねアンサンブルである。
しかし、モデル融合のための統一分類法と、これらのハイブリッドおよび機能ベースのスタックングアンサンブルアプローチの実証的比較はまだ欠落している。
本研究は,これらのトピック領域を包含する統一分類法を提案する。
さらに,本研究では,いくつかのモデル融合手法と,Deep-learning Forecast Model Averaging (DeFORMA)と呼ばれるハイブリッドおよび特徴積み重ねアルゴリズムの新たな組み合わせを実証的に評価した。
分類学は、考慮された手法を文脈化する。
さらに,実験結果から,提案モデルであるDeFORMAがM4データセットの最先端化を実現できることが示唆された。
DeFORMAは、平均体重平均(OWA)を1日、週、年ごとのサブセットで増加させ、時間ごと、月ごと、四半期ごとの競合的な結果をもたらす。
分類学と実証的な結果は、これらの研究領域の交差点を探索し続ければ、依然として大きな進歩が達成されると主張している。
関連論文リスト
- Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon [0.0]
本研究は,ブラジルのアマゾンにあるAQUA_M-T衛星によって検出された活動点の歴史的時系列をモデル化し,予測するための包括的方法論を提案する。
このアプローチでは、Long Short-Term Memory(LSTM)とGated Recurrent Unit(GRU)アーキテクチャを組み合わせた混合リカレントニューラルネットワーク(RNN)モデルを採用して、毎日検出されたアクティブファイアスポットの月次蓄積を予測する。
論文 参考訳(メタデータ) (2024-09-04T13:11:59Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Infinite forecast combinations based on Dirichlet process [9.326879672480413]
本稿では,ディリクレ過程に基づく深層学習アンサンブル予測モデルを提案する。
単一のベンチマークモデルに比べて予測精度と安定性が大幅に向上している。
論文 参考訳(メタデータ) (2023-11-21T06:41:41Z) - Replicability Study: Corpora For Understanding Simulink Models &
Projects [8.261117235807607]
本研究は, 前回のSimulinkモデル研究で採用した方法論とデータソースをレビューし, SLNETを用いて過去の解析を再現する。
オープンソースSimulinkモデルは優れたモデリングプラクティスに従っており、プロプライエタリモデルに匹敵するサイズと特性を持つモデルを含んでいることがわかった。
論文 参考訳(メタデータ) (2023-08-03T18:14:54Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Evaluating State of the Art, Forecasting Ensembles- and Meta-learning
Strategies for Model Fusion [0.0]
本稿では,異なるアンサンブルに対するベースモデルのプール内での指数平滑化リカレントニューラルネットワーク(ES-RNN)の有用性について述べる。
論文 参考訳(メタデータ) (2022-03-07T10:51:40Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - A Statistics and Deep Learning Hybrid Method for Multivariate Time
Series Forecasting and Mortality Modeling [0.0]
Exponential Smoothing Recurrent Neural Network (ES-RNN)は、統計予測モデルとリカレントニューラルネットワークのハイブリッドである。
ES-RNNはMakridakis-4 Forecasting Competitionで絶対誤差を9.4%改善した。
論文 参考訳(メタデータ) (2021-12-16T04:44:19Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。