Quantile and moment neural networks for learning functionals of
distributions
- URL: http://arxiv.org/abs/2303.11060v1
- Date: Mon, 20 Mar 2023 12:23:31 GMT
- Title: Quantile and moment neural networks for learning functionals of
distributions
- Authors: Xavier Warin
- Abstract summary: We study news neural networks to approximate function of distributions in a probability space.
Two classes of neural networks based on quantile and moment approximation are proposed to learn these functions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study news neural networks to approximate function of distributions in a
probability space. Two classes of neural networks based on quantile and moment
approximation are proposed to learn these functions and are theoretically
supported by universal approximation theorems. By mixing the quantile and
moment features in other new networks, we develop schemes that outperform
existing networks on numerical test cases involving univariate distributions.
For bivariate distributions, the moment neural network outperforms all other
networks.
Related papers
- An Analytic Solution to Covariance Propagation in Neural Networks [10.013553984400488]
This paper presents a sample-free moment propagation technique to accurately characterize the input-output distributions of neural networks.
A key enabler of our technique is an analytic solution for the covariance of random variables passed through nonlinear activation functions.
The wide applicability and merits of the proposed technique are shown in experiments analyzing the input-output distributions of trained neural networks and training Bayesian neural networks.
arXiv Detail & Related papers (2024-03-24T14:08:24Z) - Learning Theory of Distribution Regression with Neural Networks [6.961253535504979]
We establish an approximation theory and a learning theory of distribution regression via a fully connected neural network (FNN)
In contrast to the classical regression methods, the input variables of distribution regression are probability measures.
arXiv Detail & Related papers (2023-07-07T09:49:11Z) - Computational Complexity of Learning Neural Networks: Smoothness and
Degeneracy [52.40331776572531]
We show that learning depth-$3$ ReLU networks under the Gaussian input distribution is hard even in the smoothed-analysis framework.
Our results are under a well-studied assumption on the existence of local pseudorandom generators.
arXiv Detail & Related papers (2023-02-15T02:00:26Z) - Probabilistic Verification of ReLU Neural Networks via Characteristic
Functions [11.489187712465325]
We use ideas from probability theory in the frequency domain to provide probabilistic verification guarantees for ReLU neural networks.
We interpret a (deep) feedforward neural network as a discrete dynamical system over a finite horizon.
We obtain the corresponding cumulative distribution function of the output set, which can be used to check if the network is performing as expected.
arXiv Detail & Related papers (2022-12-03T05:53:57Z) - Mean-field neural networks: learning mappings on Wasserstein space [0.0]
We study the machine learning task for models with operators mapping between the Wasserstein space of probability measures and a space of functions.
Two classes of neural networks are proposed to learn so-called mean-field functions.
We present different algorithms relying on mean-field neural networks for solving time-dependent mean-field problems.
arXiv Detail & Related papers (2022-10-27T05:11:42Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - A Probabilistic Approach to Neural Network Pruning [20.001091112545065]
We theoretically study the performance of two pruning techniques (random and magnitude-based) on FCNs and CNNs.
The results establish that there exist pruned networks with expressive power within any specified bound from the target network.
arXiv Detail & Related papers (2021-05-20T23:19:43Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - The Connection Between Approximation, Depth Separation and Learnability
in Neural Networks [70.55686685872008]
We study the connection between learnability and approximation capacity.
We show that learnability with deep networks of a target function depends on the ability of simpler classes to approximate the target.
arXiv Detail & Related papers (2021-01-31T11:32:30Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
We study how neural networks trained by gradient descent extrapolate what they learn outside the support of the training distribution.
Graph Neural Networks (GNNs) have shown some success in more complex tasks.
arXiv Detail & Related papers (2020-09-24T17:48:59Z) - ResiliNet: Failure-Resilient Inference in Distributed Neural Networks [56.255913459850674]
We introduce ResiliNet, a scheme for making inference in distributed neural networks resilient to physical node failures.
Failout simulates physical node failure conditions during training using dropout, and is specifically designed to improve the resiliency of distributed neural networks.
arXiv Detail & Related papers (2020-02-18T05:58:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.