Observation of dynamical degeneracy splitting for the non-Hermitian skin
effect
- URL: http://arxiv.org/abs/2303.11109v2
- Date: Wed, 22 Mar 2023 02:10:00 GMT
- Title: Observation of dynamical degeneracy splitting for the non-Hermitian skin
effect
- Authors: Tuo Wan, Kai Zhang, Junkai Li, Zhesen Yang and Zhaoju Yang
- Abstract summary: The non-Hermitian skin effect is a distinctive phenomenon in non-Hermitian systems.
We report the experimental observation of both phenomena in a two-dimensional acoustic crystal.
- Score: 3.9198767525769145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The non-Hermitian skin effect is a distinctive phenomenon in non-Hermitian
systems, which manifests as the anomalous localization of bulk states at the
boundary. To understand the physical origin of the non-Hermitian skin effect, a
bulk band characterization based on the dynamical degeneracy on an equal
frequency contour is proposed, which reflects the strong anisotropy of the
spectral function. In this paper, we report the experimental observation of
both phenomena in a two-dimensional acoustic crystal, and reveal their
remarkable correspondence by performing single-frequency excitation
measurements. Our work not only provides a controllable experimental platform
for studying the non-Hermitian physics, but also confirms the correspondence
between the non-Hermitian skin effect and the dynamical degeneracy splitting,
paving a new way to characterize the non-Hermitian skin effect.
Related papers
- Incoherent non-Hermitian skin effect in photonic quantum walks [0.0]
The non-Hermitian skin effect describes the concentration of an extensive number of eigenstates near the boundaries of certain dissipative systems.
Here we push the concept of skin effect into the fully incoherent regime and show that rather generally (but not universally) the non-Hermitian skin effect persists under dephasing dynamics.
arXiv Detail & Related papers (2024-04-06T07:30:35Z) - Observation of dynamic non-Hermitian skin effects [14.653357833352828]
We report the first experimental observation of rich non-Hermitian skin dynamics using tunable one-dimensional nonreciprocal double-chain mechanical systems.
Remarkably, dynamic NHSEs are observed with various dynamic behaviors in different dynamic phases.
Our findings unveil the fundamental aspects and open a new pathway toward non-Hermitian dynamics.
arXiv Detail & Related papers (2023-12-10T01:44:59Z) - Non-Hermitian Mott Skin Effect [0.0]
We propose a novel type of skin effects in non-Hermitian quantum many-body systems.
This phenomenon is induced by the interplay between strong correlations and the non-Hermitian point-gap topology.
arXiv Detail & Related papers (2023-09-25T13:10:07Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Dynamical Degeneracy Splitting and Directional Invisibility in
Non-Hermitian Systems [17.001487000146863]
We introduce the concept of dynamical degeneracy splitting to describe the anisotropic decay behaviors in non-Hermitian systems.
We demonstrate that systems with dynamical degeneracy splitting exhibit two distinctive features: (i) the system shows frequency-resolved non-Hermitian skin effect; (ii) Green's function exhibits anomalous at given frequency, leading to uneven broadening in spectral function and anomalous scattering.
arXiv Detail & Related papers (2022-11-14T22:35:42Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Simulating non-Hermitian quasicrystals with single-photon quantum walks [8.119496606443793]
We experimentally simulate non-Hermitian quasicrystals using photonic quantum walks.
Our work opens the avenue of investigating the interplay of non-Hermiticity, quasiperiodicity, and spectral topology in open quantum systems.
arXiv Detail & Related papers (2021-12-30T12:19:42Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.