論文の概要: Fault Detection via Occupation Kernel Principal Component Analysis
- arxiv url: http://arxiv.org/abs/2303.11138v2
- Date: Mon, 26 Jun 2023 15:16:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 23:18:12.919048
- Title: Fault Detection via Occupation Kernel Principal Component Analysis
- Title(参考訳): occupation kernel 主成分分析による故障検出
- Authors: Zachary Morrison, Benjamin P. Russo, Yingzhao Lian, and Rushikesh
Kamalapurkar
- Abstract要約: 作業カーネルを用いた新しい主成分分析(PCA)手法を提案する。
作業カーネルは, 測定データに合わせた特徴マップを作成し, 統合利用による固有のノイズ・ロバスト性を持ち, 可変長の不規則サンプリングシステムトラジェクトリを利用することができる。
- 参考スコア(独自算出の注目度): 2.2136680238528665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The reliable operation of automatic systems is heavily dependent on the
ability to detect faults in the underlying dynamical system. While traditional
model-based methods have been widely used for fault detection, data-driven
approaches have garnered increasing attention due to their ease of deployment
and minimal need for expert knowledge. In this paper, we present a novel
principal component analysis (PCA) method that uses occupation kernels.
Occupation kernels result in feature maps that are tailored to the measured
data, have inherent noise-robustness due to the use of integration, and can
utilize irregularly sampled system trajectories of variable lengths for PCA.
The occupation kernel PCA method is used to develop a reconstruction error
approach to fault detection and its efficacy is validated using numerical
simulations.
- Abstract(参考訳): 自動システムの信頼性の高い動作は、基盤となる動的システムの障害を検出する能力に大きく依存する。
従来のモデルベースの手法はフォールト検出に広く使われているが、データ駆動のアプローチは、デプロイの容易さと専門家の知識の必要が最小限であることから、注目を集めている。
本稿では,作業カーネルを用いた主成分分析(pca)手法を提案する。
作業カーネルは, 測定データに合わせた特徴マップを作成し, 積分により固有のノイズロス性を有し, 可変長系の不規則なサンプリングシステムトラジェクトリを利用することができる。
occupation kernel pca法を用いて障害検出のための再構成誤差法を開発し,数値シミュレーションを用いてその妥当性を検証する。
関連論文リスト
- Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
本稿では, 劣化度に応じて, 復元傾向の分析により異常を検出する手法を提案する。
提案手法は,産業用異常検出のためのオープンデータセット上で検証される。
論文 参考訳(メタデータ) (2024-07-12T01:50:07Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - PAC-Based Formal Verification for Out-of-Distribution Data Detection [4.406331747636832]
本研究は、VAEの符号化プロセスを用いて、OOD検出に基づくほぼ正しい(PAC)保証を行う。
ユーザ定義の信頼性で不慣れなインスタンスに検出エラーをバインドするために使用される。
論文 参考訳(メタデータ) (2023-04-04T07:33:02Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Data-driven Residual Generation for Early Fault Detection with Limited
Data [4.129225533930966]
多くの複雑なシステムでは、システムのための高精度なモデルを開発することは不可能である。
データ駆動型ソリューションは、いくつかの実践的な理由から、産業システムにおいて大きな注目を集めている。
モデルに基づく手法とは異なり、圧力や電圧などの時系列測定を他の情報源と組み合わせることが直接の前進である。
論文 参考訳(メタデータ) (2021-09-28T03:18:03Z) - Probabilistic Bearing Fault Diagnosis Using Gaussian Process with
Tailored Feature Extraction [10.064000794573756]
転がり軸受は、過酷な環境下での長時間の運転により、様々な障害にさらされる。
現在の深層学習法は, 決定論的分類の形で軸受断層診断を行う。
本研究では,予測の不確実性を考慮した確率的故障診断フレームワークを開発した。
論文 参考訳(メタデータ) (2021-09-19T18:34:29Z) - Anomaly Detection via Self-organizing Map [52.542991004752]
製品品質管理のための工業生産において,異常検出が重要な役割を担っている。
従来の異常検出方法は、限定的な一般化能力を持つルールベースである。
教師付きディープラーニングに基づく最近の手法は、より強力だが、訓練には大規模な注釈付きデータセットが必要である。
論文 参考訳(メタデータ) (2021-07-21T06:56:57Z) - Canonical Polyadic Decomposition and Deep Learning for Machine Fault
Detection [0.0]
マシンからあらゆる種類の障害を学ぶのに十分なデータを集めることは不可能である。
健康状態のみのデータを用いてトレーニングされた新しいアルゴリズムを開発し、教師なしの異常検出を行った。
これらのアルゴリズムの開発における重要な問題は、異常検出性能に影響を与える信号のノイズである。
論文 参考訳(メタデータ) (2021-07-20T14:06:50Z) - Machine Learning to Tackle the Challenges of Transient and Soft Errors
in Complex Circuits [0.16311150636417257]
機械学習モデルは、回路インスタンスの完全なリストに対して、インスタンスごとの正確な関数デレートデータを予測するために使用される。
提案手法を実例に適用し,各種機械学習モデルの評価と比較を行った。
論文 参考訳(メタデータ) (2020-02-18T18:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。