Parent Hamiltonian Reconstruction via Inverse Quantum Annealing
- URL: http://arxiv.org/abs/2303.11200v3
- Date: Wed, 17 Apr 2024 07:31:11 GMT
- Title: Parent Hamiltonian Reconstruction via Inverse Quantum Annealing
- Authors: Davide Rattacaso, Gianluca Passarelli, Angelo Russomanno, Procolo Lucignano, Giuseppe E. Santoro, Rosario Fazio,
- Abstract summary: Finding a local Hamiltonian $hatmathcalH$ having a given many-body wavefunction $|psirangle$ as its ground state, i.e. a parent Hamiltonian, is a challenge of fundamental importance in quantum technologies.
We introduce a numerical method that efficiently performs this task through an artificial inverse dynamics.
We illustrate the method on two paradigmatic models: the Kitaev fermionic chain and a quantum Ising chain in longitudinal and transverse fields.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finding a local Hamiltonian $\hat{\mathcal{H}}$ having a given many-body wavefunction $|\psi\rangle$ as its ground state, i.e. a parent Hamiltonian, is a challenge of fundamental importance in quantum technologies. Here we introduce a numerical method, inspired by quantum annealing, that efficiently performs this task through an artificial inverse dynamics: a slow deformation of the states $|\psi(\lambda(t))\rangle$, starting from a simple state $|\psi_0\rangle$ with a known $\hat{\mathcal{H}}_0$, generates an adiabatic evolution of the corresponding Hamiltonian. We name this approach inverse quantum annealing. The method, implemented through a projection onto a set of local operators, only requires the knowledge of local expectation values, and, for long annealing times, leads to an approximate parent Hamiltonian whose degree of locality depends on the correlations built up by the states $|\psi(\lambda)\rangle$. We illustrate the method on two paradigmatic models: the Kitaev fermionic chain and a quantum Ising chain in longitudinal and transverse fields.
Related papers
- Predicting Ground State Properties: Constant Sample Complexity and Deep Learning Algorithms [48.869199703062606]
A fundamental problem in quantum many-body physics is that of finding ground states of local Hamiltonians.
We introduce two approaches that achieve a constant sample complexity, independent of system size $n$, for learning ground state properties.
arXiv Detail & Related papers (2024-05-28T18:00:32Z) - An efficient and exact noncommutative quantum Gibbs sampler [0.0]
We construct the first efficiently implementable and exactly detailed-balanced Lindbladian for Gibbs states of arbitrary noncommutative Hamiltonians.
Our construction can also be regarded as a continuous-time quantum analog of the Metropolis-Hastings algorithm.
arXiv Detail & Related papers (2023-11-15T18:51:24Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - On the complexity of implementing Trotter steps [2.1369834525800138]
We develop methods to perform faster Trotter steps with complexity sublinear in number of terms.
We also realize faster Trotter steps when certain blocks of Hamiltonian coefficients have low rank.
Our result suggests the use of Hamiltonian structural properties as both necessary and sufficient to implement Trotter synthesis steps with lower gate complexity.
arXiv Detail & Related papers (2022-11-16T19:00:01Z) - Improved Product-state Approximation Algorithms for Quantum Local
Hamiltonians [0.15229257192293202]
Ground state energy and the free energy of Quantum Local Hamiltonians are fundamental quantities in quantum many-body physics.
We develop new techniques to find classical, additive error product-state approximations for these quantities on certain families of Quantum $k$-Local Hamiltonians.
arXiv Detail & Related papers (2022-10-17T00:55:35Z) - Average-case Speedup for Product Formulas [69.68937033275746]
Product formulas, or Trotterization, are the oldest and still remain an appealing method to simulate quantum systems.
We prove that the Trotter error exhibits a qualitatively better scaling for the vast majority of input states.
Our results open doors to the study of quantum algorithms in the average case.
arXiv Detail & Related papers (2021-11-09T18:49:48Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Perelman's Ricci Flow in Topological Quantum Gravity [62.997667081978825]
In our quantum gravity, Perelman's $tau$ turns out to play the role of a dilaton for anisotropic scale transformations.
We show how Perelman's $cal F$ and $cal W$ entropy functionals are related to our superpotential.
arXiv Detail & Related papers (2020-11-24T06:29:35Z) - Quantum-inspired search method for low-energy states of classical Ising
Hamiltonians [0.0]
We develop a quantum-inspired numerical procedure for searching low-energy states of a classical Hamiltonian composed of two-body fully-connected random Ising interactions.
We consider 120 instances of the random coupling realizations for the random Ising Hamiltonian with $N$ up to 600 and search the 120 lowest-energy states for each instance.
arXiv Detail & Related papers (2020-10-01T02:29:31Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Quantum Zeno approach for molecular energies with maximum commuting
initialHamiltonians [0.0]
We use a quantum adiabatic and simulated-annealing framework to compute the ground state of small molecules.
In addition to the ground state, the low lying excited states canbe obtained using this quantum Zeno approach with equal accuracy to that of the ground state.
arXiv Detail & Related papers (2020-06-01T16:43:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.