論文の概要: Less is More: Reducing Task and Model Complexity for 3D Point Cloud
Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2303.11203v1
- Date: Mon, 20 Mar 2023 15:36:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 14:50:52.919355
- Title: Less is More: Reducing Task and Model Complexity for 3D Point Cloud
Semantic Segmentation
- Title(参考訳): less is more: 3d point cloudセマンティックセグメンテーションのためのタスクとモデルの複雑さの削減
- Authors: Li Li, Hubert P. H. Shum, Toby P. Breckon
- Abstract要約: 新しいパイプラインは、より優れたセグメンテーション精度を達成するために、より少ない地平線アノテーションを必要とする。
Sparse Depthwise Separable Convolutionモジュールは、ネットワークパラメータ数を著しく削減する。
新しいspatio-Temporal Redundant Frame Downsampling (ST-RFD) 法は、トレーニングデータフレームのより多様なサブセットを抽出する。
- 参考スコア(独自算出の注目度): 26.94284739177754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Whilst the availability of 3D LiDAR point cloud data has significantly grown
in recent years, annotation remains expensive and time-consuming, leading to a
demand for semi-supervised semantic segmentation methods with application
domains such as autonomous driving. Existing work very often employs relatively
large segmentation backbone networks to improve segmentation accuracy, at the
expense of computational costs. In addition, many use uniform sampling to
reduce ground truth data requirements for learning needed, often resulting in
sub-optimal performance. To address these issues, we propose a new pipeline
that employs a smaller architecture, requiring fewer ground-truth annotations
to achieve superior segmentation accuracy compared to contemporary approaches.
This is facilitated via a novel Sparse Depthwise Separable Convolution module
that significantly reduces the network parameter count while retaining overall
task performance. To effectively sub-sample our training data, we propose a new
Spatio-Temporal Redundant Frame Downsampling (ST-RFD) method that leverages
knowledge of sensor motion within the environment to extract a more diverse
subset of training data frame samples. To leverage the use of limited annotated
data samples, we further propose a soft pseudo-label method informed by LiDAR
reflectivity. Our method outperforms contemporary semi-supervised work in terms
of mIoU, using less labeled data, on the SemanticKITTI (59.5@5%) and
ScribbleKITTI (58.1@5%) benchmark datasets, based on a 2.3x reduction in model
parameters and 641x fewer multiply-add operations whilst also demonstrating
significant performance improvement on limited training data (i.e., Less is
More).
- Abstract(参考訳): 近年,3D LiDARポイントクラウドデータの可用性は著しく向上しているが,アノテーションは高価で時間を要するため,自律運転などのアプリケーションドメインによる半教師付きセマンティックセグメンテーション手法が求められている。
既存の作業は、計算コストを犠牲にして、セグメント化精度を向上させるために比較的大きなセグメント化バックボーンネットワークを使用することが多い。
さらに、必要となる学習のための基礎的真理データ要求を減らすために、均一なサンプリングを使用することが多い。
これらの問題に対処するため,従来のアプローチに比べてセグメント化精度が向上するために,より小さなアーキテクチャを採用するパイプラインを提案する。
これはSparse Depthwise Separable Convolutionモジュールによって実現され、タスク全体のパフォーマンスを維持しながら、ネットワークパラメータの数を著しく削減する。
トレーニングデータを効果的にサブサンプリングするために,環境内におけるセンサモーションの知識を活用して,より多様なトレーニングデータフレームサンプルを抽出する,時空間冗長フレームダウンサンプリング(ST-RFD)手法を提案する。
限られた注釈付きデータサンプルの利用を活用するために,LiDAR反射率を指標としたソフトな擬似ラベル手法を提案する。
本手法は,モデルパラメータの2.3倍の削減と641倍の乗算演算に基づくSemanticKITTI (59.5@5%) およびScribbleKITTI (58.1@5%) ベンチマークデータセットにおいて,ラベル付きデータの少ない使用により,従来の半教師付き作業よりも優れ,同時に限られたトレーニングデータ(例:Less is More)に対して大幅な性能向上を示す。
関連論文リスト
- Exploiting Local Features and Range Images for Small Data Real-Time Point Cloud Semantic Segmentation [4.02235104503587]
本稿では,3次元表現から得られる情報を利用して局所的な特徴を巧みにとらえる。
GPUベースのKDTreeは、素早いビルド、クエリ、プロジェクションの強化を、簡単な操作で実現している。
我々は,本モデルの縮小バージョンが,本格的な最先端モデルに対して強い競争力を示すだけでなく,リアルタイムに動作することを示す。
論文 参考訳(メタデータ) (2024-10-14T13:49:05Z) - Just How Flexible are Neural Networks in Practice? [89.80474583606242]
ニューラルネットワークは、パラメータを持つ少なくとも多くのサンプルを含むトレーニングセットに適合できると広く信じられている。
しかし実際には、勾配や正規化子など、柔軟性を制限したトレーニング手順によるソリューションしか見つからない。
論文 参考訳(メタデータ) (2024-06-17T12:24:45Z) - Exploring Learning Complexity for Efficient Downstream Dataset Pruning [8.990878450631596]
既存のデータセットプルーニングメソッドでは、データセット全体のトレーニングが必要になる。
本稿では、DLC(Distorting-based Learning Complexity)という、単純で、新規で、トレーニング不要な難易度スコアを提案する。
本手法は,より高速に学習できるサンプルを少ないパラメータで学習できるという観察結果に動機付けられている。
論文 参考訳(メタデータ) (2024-02-08T02:29:33Z) - KAKURENBO: Adaptively Hiding Samples in Deep Neural Network Training [2.8804804517897935]
深層ニューラルネットワークのトレーニングにおいて,最も重要でないサンプルを隠蔽する手法を提案する。
我々は,学習プロセス全体への貢献に基づいて,与えられたエポックを除外するサンプルを適応的に見つける。
本手法は, ベースラインと比較して, 最大22%の精度でトレーニング時間を短縮できる。
論文 参考訳(メタデータ) (2023-10-16T06:19:29Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
本研究では,事前学習損失,教師付きデータ量,拡張データ量が教師付きLDMの推論性能に与える影響について検討する。
複数のモデルからの拒絶サンプルは、LLaMA-7BをGSM8Kの49.3%の精度に押し上げ、監督された微調整(SFT)の精度を35.9%上回る結果となった。
論文 参考訳(メタデータ) (2023-08-03T15:34:01Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
コンピュータビジョンにおけるディープラーニングは、大規模ラベル付きトレーニングデータの価格で大きな成功を収めた。
制御不能なデータ収集プロセスは、望ましくない重複が存在する可能性のある非IIDトレーニングおよびテストデータを生成する。
これを回避するために、ドメインランダム化による3Dレンダリングによる合成データを生成する方法がある。
論文 参考訳(メタデータ) (2023-03-16T09:03:52Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
半教師付き学習(SSL)では、ラベル付きデータと同じ分布からラベル付きデータが引き出されることが一般的である。
サンプル重み付けによりラベルなしデータを選択的に活用することを提案する。
論文 参考訳(メタデータ) (2022-05-02T16:09:17Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - Learning to Count in the Crowd from Limited Labeled Data [109.2954525909007]
我々は,限られた数のラベル付きサンプルから参加者を数えることを学ぶことで,アノテーションの努力を減らすことに重点を置いている。
具体的には,未ラベルデータに対する擬似地下真理推定を含むガウス過程に基づく反復学習機構を提案する。
論文 参考訳(メタデータ) (2020-07-07T04:17:01Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。