What Makes Data Suitable for a Locally Connected Neural Network? A
Necessary and Sufficient Condition Based on Quantum Entanglement
- URL: http://arxiv.org/abs/2303.11249v5
- Date: Sun, 21 Jan 2024 06:00:24 GMT
- Title: What Makes Data Suitable for a Locally Connected Neural Network? A
Necessary and Sufficient Condition Based on Quantum Entanglement
- Authors: Yotam Alexander, Nimrod De La Vega, Noam Razin, Nadav Cohen
- Abstract summary: We show that a certain locally connected neural network is capable of accurate prediction over a data distribution if and only if the data distribution admits low quantum entanglement.
We derive a preprocessing method for enhancing the suitability of a data distribution to locally connected neural networks.
- Score: 12.143300311536201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The question of what makes a data distribution suitable for deep learning is
a fundamental open problem. Focusing on locally connected neural networks (a
prevalent family of architectures that includes convolutional and recurrent
neural networks as well as local self-attention models), we address this
problem by adopting theoretical tools from quantum physics. Our main
theoretical result states that a certain locally connected neural network is
capable of accurate prediction over a data distribution if and only if the data
distribution admits low quantum entanglement under certain canonical partitions
of features. As a practical application of this result, we derive a
preprocessing method for enhancing the suitability of a data distribution to
locally connected neural networks. Experiments with widespread models over
various datasets demonstrate our findings. We hope that our use of quantum
entanglement will encourage further adoption of tools from physics for formally
reasoning about the relation between deep learning and real-world data.
Related papers
- Using Cooperative Game Theory to Prune Neural Networks [7.3959659158152355]
We show how solution concepts from cooperative game theory can be used to tackle the problem of pruning neural networks.
We introduce a method called Game Theory Assisted Pruning (GTAP), which reduces the neural network's size while preserving its predictive accuracy.
arXiv Detail & Related papers (2023-11-17T11:48:10Z) - Neural Network with Local Converging Input (NNLCI) for Supersonic Flow
Problems with Unstructured Grids [0.9152133607343995]
We develop a neural network with local converging input (NNLCI) for high-fidelity prediction using unstructured data.
As a validation case, the NNLCI method is applied to study inviscid supersonic flows in channels with bumps.
arXiv Detail & Related papers (2023-10-23T19:03:37Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Statistical Physics of Deep Neural Networks: Initialization toward
Optimal Channels [6.144858413112823]
In deep learning, neural networks serve as noisy channels between input data and its representation.
We study a frequently overlooked possibility that neural networks can be intrinsic toward optimal channels.
arXiv Detail & Related papers (2022-12-04T05:13:01Z) - Flexible learning of quantum states with generative query neural
networks [4.540894342435848]
We show that learning across multiple quantum states can be achieved by a generative query neural network.
Our network can be trained offline with classically simulated data, and later be used to characterize unknown quantum states from real experimental data.
arXiv Detail & Related papers (2022-02-14T15:48:27Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
This paper introduces a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FF-NSL)
FF-NSL integrates state-of-the-art ILP systems based on the Answer Set semantics, with neural networks, in order to learn interpretable hypotheses from labelled unstructured data.
arXiv Detail & Related papers (2021-06-24T15:38:34Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
We study how neural networks trained by gradient descent extrapolate what they learn outside the support of the training distribution.
Graph Neural Networks (GNNs) have shown some success in more complex tasks.
arXiv Detail & Related papers (2020-09-24T17:48:59Z) - Consistent feature selection for neural networks via Adaptive Group
Lasso [3.42658286826597]
We propose and establish a theoretical guarantee for the use of the adaptive group for selecting important features of neural networks.
Specifically, we show that our feature selection method is consistent for single-output feed-forward neural networks with one hidden layer and hyperbolic tangent activation function.
arXiv Detail & Related papers (2020-05-30T18:50:56Z) - ResiliNet: Failure-Resilient Inference in Distributed Neural Networks [56.255913459850674]
We introduce ResiliNet, a scheme for making inference in distributed neural networks resilient to physical node failures.
Failout simulates physical node failure conditions during training using dropout, and is specifically designed to improve the resiliency of distributed neural networks.
arXiv Detail & Related papers (2020-02-18T05:58:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.