Grover's Algorithm Offers No Quantum Advantage
- URL: http://arxiv.org/abs/2303.11317v1
- Date: Mon, 20 Mar 2023 17:56:20 GMT
- Title: Grover's Algorithm Offers No Quantum Advantage
- Authors: E.M. Stoudenmire and Xavier Waintal
- Abstract summary: Grover's algorithm is one of the primary algorithms offered as evidence that quantum computers can provide an advantage over classical computers.
We construct a quantum inspired algorithm, executable on a classical computer, that performs Grover's task in linear number of call to the oracle.
We critically examine the possibility of a practical speedup, a possibility that depends on the nature of the quantum circuit associated with the oracle.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Grover's algorithm is one of the primary algorithms offered as evidence that
quantum computers can provide an advantage over classical computers. It
involves an "oracle" (external quantum subroutine) which must be specified for
a given application and whose internal structure is not part of the formal
scaling of the quantum speedup guaranteed by the algorithm. Grover's algorithm
also requires exponentially many steps to succeed, raising the question of its
implementation on near-term, non-error-corrected hardware and indeed even on
error-corrected quantum computers. In this work, we construct a quantum
inspired algorithm, executable on a classical computer, that performs Grover's
task in a linear number of call to the oracle - an exponentially smaller number
than Grover's algorithm - and demonstrate this algorithm explicitly for boolean
satisfiability problems (3-SAT). Our finding implies that there is no a priori
theoretical quantum speedup associated with Grover's algorithm. We critically
examine the possibility of a practical speedup, a possibility that depends on
the nature of the quantum circuit associated with the oracle. We argue that the
unfavorable scaling of the success probability of Grover's algorithm, which in
the presence of noise decays as the exponential of the exponential of the
number of qubits, makes a practical speedup unrealistic even under extremely
optimistic assumptions on both hardware quality and availability.
Related papers
- Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Quantum Advantage of Noisy Grover's Algorithm [3.803244458097104]
Grover's search algorithm is the only quantum algorithm with proven advantage to any possible classical search algorithm.
We present a noise-tolerant method that exponentially improves the noise threshold of Grover's algorithm.
arXiv Detail & Related papers (2023-06-19T11:17:32Z) - Recovering the original simplicity: succinct and deterministic quantum
algorithm for the welded tree problem [0.0]
This work revisits quantum algorithms for the well-known welded tree problem.
It proposes a very succinct quantum algorithm based on the simplest coined quantum walks.
arXiv Detail & Related papers (2023-04-17T16:03:50Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Complexity-Theoretic Limitations on Quantum Algorithms for Topological
Data Analysis [59.545114016224254]
Quantum algorithms for topological data analysis seem to provide an exponential advantage over the best classical approach.
We show that the central task of TDA -- estimating Betti numbers -- is intractable even for quantum computers.
We argue that an exponential quantum advantage can be recovered if the input data is given as a specification of simplices.
arXiv Detail & Related papers (2022-09-28T17:53:25Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Hybrid Quantum-Classical Search Algorithms [0.0]
We show that classical computation, unless it by itself can solve the Search problem, cannot assist quantum computation.
We generalize this result to algorithms with subconstant success probabilities.
arXiv Detail & Related papers (2022-02-23T11:43:17Z) - Hardware Efficient Quantum Search Algorithm [17.74233101199813]
We propose a novel hardware efficient quantum search algorithm to overcome this challenge.
Our key idea is to replace the global diffusion operation with low-cost local diffusions.
The circuit cost reduction leads to a remarkable improvement in the system success rates.
arXiv Detail & Related papers (2021-03-26T01:08:50Z) - Quantum Computing without Quantum Computers: Database Search and Data
Processing Using Classical Wave Superposition [101.18253437732933]
We present experimental data on magnetic database search using spin wave superposition.
We argue that in some cases the classical wave-based approach may provide the same speedup in database search as quantum computers.
arXiv Detail & Related papers (2020-12-15T16:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.