論文の概要: ADCNet: End-to-end perception with raw radar ADC data
- arxiv url: http://arxiv.org/abs/2303.11420v2
- Date: Tue, 28 Mar 2023 01:30:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 18:12:18.004024
- Title: ADCNet: End-to-end perception with raw radar ADC data
- Title(参考訳): ADCNet:生のレーダーADCデータによるエンドツーエンドの認識
- Authors: Bo Yang, Ishan Khatri, Michael Happold, Chulong Chen
- Abstract要約: 新たなトレンドは、リッチで低レベルなレーダーデータを知覚に活用することだ。
本稿では,生のレーダアナログ・デジタル(ADC)データを用いてエンドツーエンドの学習を行う手法を提案する。
- 参考スコア(独自算出の注目度): 4.407462751823577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a renewed interest in radar sensors in the autonomous driving
industry. As a relatively mature technology, radars have seen steady
improvement over the last few years, making them an appealing alternative or
complement to the commonly used LiDARs. An emerging trend is to leverage rich,
low-level radar data for perception. In this work we push this trend to the
extreme -- we propose a method to perform end-to-end learning on the raw radar
analog-to-digital (ADC) data. Specifically, we design a learnable signal
processing module inside the neural network, and a pre-training method guided
by traditional signal processing algorithms. Experiment results corroborate the
overall efficacy of the end-to-end learning method, while an ablation study
validates the effectiveness of our individual innovations.
- Abstract(参考訳): 自動運転業界ではレーダーセンサーへの関心が再び高まっている。
比較的成熟した技術として、レーダーはここ数年着実に改良され、一般的なlidarの代替品や補完品となっている。
新たなトレンドは、リッチで低レベルのレーダーデータを知覚に活用することです。
本研究では,この傾向を極端に推し進めて,生のレーダアナログ・デジタル(ADC)データに基づいてエンドツーエンドの学習を行う手法を提案する。
具体的には,ニューラルネットワーク内の学習可能な信号処理モジュールと,従来の信号処理アルゴリズムによる事前学習手法を設計する。
実験結果から,エンド・ツー・エンド・ラーニング手法の総合的効果が相関し,アブレーション研究は個人のイノベーションの有効性を検証した。
関連論文リスト
- SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data [5.344444942640663]
レーダー生データは、しばしば過剰なノイズを含むが、レーダー点雲は限られた情報しか保持しない。
本稿では,適応的なサブサンプリング手法と,空間パターンを利用したネットワークアーキテクチャを提案する。
RADIalデータセットの実験により,SparseRadNetはオブジェクト検出における最先端(SOTA)性能を超え,自由空間セグメンテーションにおけるSOTA精度に近づいた。
論文 参考訳(メタデータ) (2024-06-15T11:26:10Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
レーダー中心のデータセットは、レーダー知覚のためのディープラーニング技術の開発にはあまり注目されていない。
本稿では,視覚深層学習における最先端技術を活用したトランスフォーマーモデルRadarFormerを提案する。
また、チャネルチャープ時マージモジュールを導入し、精度を損なうことなく、モデルのサイズと複雑さを10倍以上に削減する。
論文 参考訳(メタデータ) (2023-04-17T17:07:35Z) - Automotive RADAR sub-sampling via object detection networks: Leveraging
prior signal information [18.462990836437626]
自動運転技術への関心が高まり、自動車レーダーはますます注目を集めている。
本研究では,従来の環境条件の知識に基づいて,より詳細な/正確な再構築を必要とする地域を特定するための適応型レーダサブサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-21T05:32:28Z) - ERASE-Net: Efficient Segmentation Networks for Automotive Radar Signals [13.035425992944543]
本稿では,効率的なレーダセグメンテーションネットワークであるERASE-Netを導入し,生のレーダ信号を意味的に分割する。
本手法は,最新技術(SOTA)と比較して,レーダセマンティックセグメンテーションタスクにおいて優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2022-09-26T18:23:22Z) - End-to-end system for object detection from sub-sampled radar data [18.462990836437626]
本稿では,車載環境下で物体検出を行うために,サブサンプリングレーダデータを利用するエンドツーエンド信号処理パイプラインを提案する。
極端気象条件下での試料の20%を用いて再構成したレーダーデータに基づくロバスト検出を示す。
微調整セットで20%のサンプルレーダデータを生成し,AP50が1.1%,AP50が3%向上した。
論文 参考訳(メタデータ) (2022-03-08T08:02:33Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。