論文の概要: ResDTA: Predicting Drug-Target Binding Affinity Using Residual Skip
Connections
- arxiv url: http://arxiv.org/abs/2303.11434v1
- Date: Mon, 20 Mar 2023 20:27:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-22 17:25:18.143989
- Title: ResDTA: Predicting Drug-Target Binding Affinity Using Residual Skip
Connections
- Title(参考訳): ResDTA:残留スキップ接続を用いた薬物標的結合親和性予測
- Authors: Partho Ghosh and Md. Aynal Haque
- Abstract要約: 本稿では,DT結合親和性を予測するための深層学習手法を提案する。
提案したモデルでは,最大のベンチマークデータセットの1つにおいて,最高のコンコーダンス指標(CI)性能を達成している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery of novel drug target (DT) interactions is an important step in
the drug development process. The majority of computer techniques for
predicting DT interactions have focused on binary classification, with the goal
of determining whether or not a DT pair interacts. Protein ligand interactions,
on the other hand, assume a continuous range of binding strength values, also
known as binding affinity, and forecasting this value remains a difficulty. As
the amount of affinity data in DT knowledge-bases grows, advanced learning
techniques such as deep learning architectures can be used to predict binding
affinities. In this paper, we present a deep-learning-based methodology for
predicting DT binding affinities using just sequencing information from both
targets and drugs. The results show that the proposed deep learning-based model
that uses the 1D representations of targets and drugs is an effective approach
for drug target binding affinity prediction and it does not require additional
chemical domain knowledge to work with. The model in which high-level
representations of a drug and a target are constructed via CNNs that uses
residual skip connections and also with an additional stream to create a
high-level combined representation of the drug-target pair achieved the best
Concordance Index (CI) performance in one of the largest benchmark datasets,
outperforming the recent state-of-the-art method AttentionDTA and many other
machine-learning and deep-learning based baseline methods for DT binding
affinity prediction that uses the 1D representations of targets and drugs.
- Abstract(参考訳): 新規な薬物標的(DT)相互作用の発見は、薬物開発プロセスにおける重要なステップである。
DTの相互作用を予測するコンピュータ技術の大半は、DTペアが相互作用するかどうかを決定することを目的として、バイナリ分類に焦点を当てている。
一方、タンパク質リガンド相互作用は、結合親和性としても知られる連続的な結合強度値を想定し、この値を予測することは困難である。
DTナレッジベースにおける親和性データの量が増加するにつれて、ディープラーニングアーキテクチャのような高度な学習技術が結合親和性を予測するために用いられる。
本稿では,標的と薬物の双方から情報をシークエンシングするだけでdt結合親和性を予測するための深層学習に基づく手法を提案する。
その結果, ターゲットと薬物の1次元表現を用いた深層学習モデルが, 薬物標的結合親和性予測に有効なアプローチであり, 追加の化学ドメイン知識を必要としないことが示唆された。
The model in which high-level representations of a drug and a target are constructed via CNNs that uses residual skip connections and also with an additional stream to create a high-level combined representation of the drug-target pair achieved the best Concordance Index (CI) performance in one of the largest benchmark datasets, outperforming the recent state-of-the-art method AttentionDTA and many other machine-learning and deep-learning based baseline methods for DT binding affinity prediction that uses the 1D representations of targets and drugs.
関連論文リスト
- FusionDTI: Fine-grained Binding Discovery with Token-level Fusion for Drug-Target Interaction [23.521628951362647]
本稿では,トークンレベルのFusionモジュールを用いてドラッグ・ターゲットインタラクションの詳細な情報を学習するFusionDTIという新しいモデルを提案する。
特に、FusionDTIモデルでは、医薬品のSELFIES表現を使用して、配列フラグメントの無効化を軽減しています。
提案したFusionDTIモデルは,既存の7つの最先端ベースラインと比較して,DTI予測において最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2024-06-03T14:48:54Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
既存の方法は、DTI予測中にグローバルなタンパク質情報を利用することができない。
ローカルおよびグローバルなタンパク質情報を取得するために、クロスフィールド情報融合戦略が採用されている。
SiamDTI予測法は、新規薬物や標的に対する他の最先端(SOTA)法よりも高い精度を達成する。
論文 参考訳(メタデータ) (2024-05-23T13:25:20Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
薬物発見の鍵となる側面は、新規な薬物標的相互作用(DT)の同定である。
タンパク質-リガンド相互作用は結合親和性として知られる結合強度の連続性を示す。
性能向上のための新しい改良を提案する。
論文 参考訳(メタデータ) (2023-10-06T05:00:25Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Associative Learning Mechanism for Drug-Target Interaction Prediction [6.107658437700639]
薬物-標的親和性(DTA)は薬物-標的相互作用(DTI)の強さを表す
従来の手法では、DTA予測プロセスの解釈可能性に欠けていた。
本稿では,対話型学習と自動エンコーダ機構を備えたDTA予測手法を提案する。
論文 参考訳(メタデータ) (2022-05-24T14:25:28Z) - HampDTI: a heterogeneous graph automatic meta-path learning method for
drug-target interaction prediction [4.499861098235355]
異種グラフ自動メタパス学習に基づくDTI予測法(HampDTI)を提案する。
HampDTIは、薬物と標的の間の重要なメタパスをHNから自動的に学習し、メタパスグラフを生成する。
ベンチマークデータを用いた実験により,提案したHampDTIは最先端のDTI予測手法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2021-12-16T02:12:03Z) - Toward Robust Drug-Target Interaction Prediction via Ensemble Modeling
and Transfer Learning [0.0]
本稿では,DTI予測のための深層学習モデル(EnsembleDLM)のアンサンブルを紹介する。
EnsembleDLMは、化学物質やタンパク質の配列情報のみを使用し、複数のディープニューラルネットワークからの予測を集約する。
DavisとKIBAのデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-07-02T04:00:03Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
薬物標的相互作用(DTI)予測は、シリコ薬物発見の基本的な課題である。
近年、DTI予測におけるディープラーニングの進歩が期待されている。
これらの制約に対処する分子間相互作用変換器(TransMol)を提案する。
論文 参考訳(メタデータ) (2020-04-23T18:56:04Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
Deep Relationsは物理にインスパイアされた、本質的に説明可能なアーキテクチャを持つディープリレーショナルネットワークである。
それは最先端技術に対する優れた解釈可能性を示している。
接触予測 9.5, 16.9, 19.3, 5.7 倍の AUPRC をテスト用、複合ユニク、タンパク質ユニク、両ユニクセットで強化する。
論文 参考訳(メタデータ) (2019-12-29T00:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。