論文の概要: MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction
- arxiv url: http://arxiv.org/abs/2004.11424v1
- Date: Thu, 23 Apr 2020 18:56:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 12:39:12.320124
- Title: MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction
- Title(参考訳): moltrans: 薬物標的相互作用予測のための分子相互作用トランスフォーマー
- Authors: Kexin Huang, Cao Xiao, Lucas Glass, Jimeng Sun
- Abstract要約: 薬物標的相互作用(DTI)予測は、シリコ薬物発見の基本的な課題である。
近年、DTI予測におけるディープラーニングの進歩が期待されている。
これらの制約に対処する分子間相互作用変換器(TransMol)を提案する。
- 参考スコア(独自算出の注目度): 68.5766865583049
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drug target interaction (DTI) prediction is a foundational task for in silico
drug discovery, which is costly and time-consuming due to the need of
experimental search over large drug compound space. Recent years have witnessed
promising progress for deep learning in DTI predictions. However, the following
challenges are still open: (1) the sole data-driven molecular representation
learning approaches ignore the sub-structural nature of DTI, thus produce
results that are less accurate and difficult to explain; (2) existing methods
focus on limited labeled data while ignoring the value of massive unlabelled
molecular data. We propose a Molecular Interaction Transformer (MolTrans) to
address these limitations via: (1) knowledge inspired sub-structural pattern
mining algorithm and interaction modeling module for more accurate and
interpretable DTI prediction; (2) an augmented transformer encoder to better
extract and capture the semantic relations among substructures extracted from
massive unlabeled biomedical data. We evaluate MolTrans on real world data and
show it improved DTI prediction performance compared to state-of-the-art
baselines.
- Abstract(参考訳): 薬物標的相互作用(DTI)予測は、大きな薬物化合物空間を実験的に探索する必要があるため、コストと時間を要するシリコ薬物発見の基本的な課題である。
近年、DTI予測におけるディープラーニングの進歩が期待されている。
しかし, 1 つのデータ駆動型分子表現学習手法は DTI のサブ構造的性質を無視し, より正確で説明が難しい結果を生成する。
分子間相互作用変換器 (MolTrans) は,(1) より正確かつ解釈可能なDTI予測のためのサブ構造パターンマイニングアルゴリズムと相互作用モデリングモジュールの知識,(2) 大規模未ラベルバイオメディカルデータから抽出されたサブ構造間の意味的関係をよりよく抽出し,捉えるための拡張トランスコーダを提案する。
実世界のデータからMoltTransを評価し,最先端のベースラインと比較してDTI予測性能が向上したことを示す。
関連論文リスト
- YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
伝統的な手法は複雑な分子構造を見逃し、不正確な結果をもたらすことが多い。
本稿では,グラフ畳み込みネットワーク(GCN),トランスフォーマーアーキテクチャ,Long Short-Term Memory(LSTM)ネットワークを統合するディープラーニングフレームワークであるYZS-Modelを紹介する。
YZS-Modelは、R2$ 0.59、RMSE$ 0.57を達成し、ベンチマークモデルを上回った。
論文 参考訳(メタデータ) (2024-06-27T12:40:29Z) - HiGraphDTI: Hierarchical Graph Representation Learning for Drug-Target Interaction Prediction [15.005837084219355]
階層型グラフ表現学習に基づくDTI予測法(HiGraphDTI)を提案する。
具体的には、HiGraphDTIは三重レベル分子グラフから階層的な薬物表現を学び、原子、モチーフ、分子に埋め込まれた化学情報を徹底的に活用する。
注目特徴融合モジュールは、異なる受容領域からの情報を組み込んで表現対象特徴を抽出する。
論文 参考訳(メタデータ) (2024-04-16T13:35:24Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - FragXsiteDTI: Revealing Responsible Segments in Drug-Target Interaction
with Transformer-Driven Interpretation [0.09236074230806578]
薬物-標的相互作用(DTI)予測は薬物発見に不可欠であるが、モデル解釈可能性の実現と性能の最適化には課題が続く。
DTI予測におけるこれらの課題に対処することを目的とした新しいトランスフォーマーモデルFragXsiteDTIを提案する。
FragXsiteDTIは、薬物分子断片とタンパク質ポケットを同時に利用する最初のDTIモデルである。
論文 参考訳(メタデータ) (2023-11-04T04:57:13Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Associative Learning Mechanism for Drug-Target Interaction Prediction [6.107658437700639]
薬物-標的親和性(DTA)は薬物-標的相互作用(DTI)の強さを表す
従来の手法では、DTA予測プロセスの解釈可能性に欠けていた。
本稿では,対話型学習と自動エンコーダ機構を備えたDTA予測手法を提案する。
論文 参考訳(メタデータ) (2022-05-24T14:25:28Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
人体における薬物と標的(DTI)の相互作用は、生物医学や応用において重要な役割を担っている。
毎年何百万もの論文がバイオメディカル分野で出回っているので、文学からDTIの知識を自動的に発見することは、業界にとって急激な需要となっている。
生成的アプローチを用いて,この課題に対する最初のエンドツーエンドソリューションについて検討する。
我々はDTI三重項をシーケンスとみなし、Transformerベースのモデルを使ってエンティティや関係の詳細なアノテーションを使わずに直接生成する。
論文 参考訳(メタデータ) (2021-09-27T17:00:14Z) - Drug-Target Interaction Prediction with Graph Attention networks [26.40249934284416]
DTI予測のためのエンドツーエンドフレームワークであるDTI-GAT(Drug-Target Interaction Prediction with Graph Attention Network)を提案する。
DTI-GATは、注目機構を備えたグラフ構造化データで動作するディープネットワークニューラルアーキテクチャを組み込んでいる。
実験により、DTI-GATはバイナリDTI予測問題において、様々な最先端システムより優れていることが示された。
論文 参考訳(メタデータ) (2021-07-10T07:06:36Z) - SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge
Graph Summarization [64.56399911605286]
本稿では,サブグラフ抽出モジュールによって実現された知識要約グラフニューラルネットワークSumGNNを提案する。
SumGNNは5.54%まで最高のベースラインを上回り、データ関係の低いタイプでは特にパフォーマンスの向上が顕著である。
論文 参考訳(メタデータ) (2020-10-04T00:14:57Z) - DeepPurpose: a Deep Learning Library for Drug-Target Interaction
Prediction [69.7424023336611]
DeepPurposeは、DTI予測のための包括的で使いやすいディープラーニングライブラリである。
15の複合およびタンパク質エンコーダと50以上のニューラルアーキテクチャを実装することで、カスタマイズされたDTI予測モデルのトレーニングをサポートする。
複数のベンチマークデータセット上でDeepPurposeの最先端性能を示す。
論文 参考訳(メタデータ) (2020-04-19T17:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。