Fairness-Aware Graph Filter Design
- URL: http://arxiv.org/abs/2303.11459v1
- Date: Mon, 20 Mar 2023 21:31:51 GMT
- Title: Fairness-Aware Graph Filter Design
- Authors: O.Deniz Kose, Yanning Shen, Gonzalo Mateos
- Abstract summary: Graphs are mathematical tools that can be used to represent complex real-world systems.
Machine learning (ML) over graphs amplifies the already existing bias towards certain under-represented groups.
We propose a fair graph filter that can be employed in a versatile manner for graph-based learning tasks.
- Score: 19.886840347109285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs are mathematical tools that can be used to represent complex
real-world systems, such as financial markets and social networks. Hence,
machine learning (ML) over graphs has attracted significant attention recently.
However, it has been demonstrated that ML over graphs amplifies the already
existing bias towards certain under-represented groups in various
decision-making problems due to the information aggregation over biased graph
structures. Faced with this challenge, in this paper, we design a fair graph
filter that can be employed in a versatile manner for graph-based learning
tasks. The design of the proposed filter is based on a bias analysis and its
optimality in mitigating bias compared to its fairness-agnostic counterpart is
established. Experiments on real-world networks for node classification
demonstrate the efficacy of the proposed filter design in mitigating bias,
while attaining similar utility and better stability compared to baseline
algorithms.
Related papers
- Online Graph Filtering Over Expanding Graphs [14.594691605523005]
We propose an online graph filtering framework by relying on online learning principles.
We design filters for scenarios where the topology is both known and unknown, including a learner adaptive to such evolution.
We conduct a regret analysis to highlight the role played by the different components such as the online algorithm, the filter order, and the growing graph model.
arXiv Detail & Related papers (2024-09-11T11:50:16Z) - FairWire: Fair Graph Generation [18.6649050946022]
This work focuses on the analysis and mitigation of structural bias for both real and synthetic graphs.
To alleviate the identified bias factors, we design a novel fairness regularizer that offers a versatile use.
We propose a fair graph generation framework, FairWire, by leveraging our fair regularizer design in a generative model.
arXiv Detail & Related papers (2024-02-06T20:43:00Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
We propose textsfFair textsfMessage textsfPassing (FMP) designed within a unified optimization framework for graph neural networks (GNNs)
In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.
Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets.
arXiv Detail & Related papers (2023-12-19T18:00:15Z) - Deceptive Fairness Attacks on Graphs via Meta Learning [102.53029537886314]
We study deceptive fairness attacks on graphs to answer the question: How can we achieve poisoning attacks on a graph learning model to exacerbate the bias deceptively?
We propose a meta learning-based framework named FATE to attack various fairness definitions and graph learning models.
We conduct extensive experimental evaluations on real-world datasets in the task of semi-supervised node classification.
arXiv Detail & Related papers (2023-10-24T09:10:14Z) - Fairness-aware Optimal Graph Filter Design [25.145533328758614]
Graphs are mathematical tools that can be used to represent complex real-world interconnected systems.
Machine learning (ML) over graphs has attracted significant attention recently.
We take a fresh look at the problem of bias mitigation in graph-based learning by borrowing insights from graph signal processing.
arXiv Detail & Related papers (2023-10-22T22:40:40Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
Graph neural networks (GNNs) have achieved impressive performance when testing and training graph data come from identical distribution.
Existing GNNs lack out-of-distribution generalization abilities so that their performance substantially degrades when there exist distribution shifts between testing and training graph data.
We propose an out-of-distribution generalized graph neural network (OOD-GNN) for achieving satisfactory performance on unseen testing graphs that have different distributions with training graphs.
arXiv Detail & Related papers (2021-12-07T16:29:10Z) - Unbiased Graph Embedding with Biased Graph Observations [52.82841737832561]
We propose a principled new way for obtaining unbiased representations by learning from an underlying bias-free graph.
Based on this new perspective, we propose two complementary methods for uncovering such an underlying graph.
arXiv Detail & Related papers (2021-10-26T18:44:37Z) - Biased Edge Dropout for Enhancing Fairness in Graph Representation
Learning [14.664485680918725]
We propose a biased edge dropout algorithm (FairDrop) to counter-act homophily and improve fairness in graph representation learning.
FairDrop can be plugged in easily on many existing algorithms, is efficient, adaptable, and can be combined with other fairness-inducing solutions.
We prove that the proposed algorithm can successfully improve the fairness of all models up to a small or negligible drop in accuracy.
arXiv Detail & Related papers (2021-04-29T08:59:36Z) - Graph Classification by Mixture of Diverse Experts [67.33716357951235]
We present GraphDIVE, a framework leveraging mixture of diverse experts for imbalanced graph classification.
With a divide-and-conquer principle, GraphDIVE employs a gating network to partition an imbalanced graph dataset into several subsets.
Experiments on real-world imbalanced graph datasets demonstrate the effectiveness of GraphDIVE.
arXiv Detail & Related papers (2021-03-29T14:03:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.