論文の概要: Smart-Tree: Neural Medial Axis Approximation of Point Clouds for 3D Tree
Skeletonization
- arxiv url: http://arxiv.org/abs/2303.11560v1
- Date: Tue, 21 Mar 2023 03:03:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-22 16:48:49.389990
- Title: Smart-Tree: Neural Medial Axis Approximation of Point Clouds for 3D Tree
Skeletonization
- Title(参考訳): Smart-Tree: 3次元木骨格化のための点雲のニューラルネットワーク軸近似
- Authors: Harry Dobbs, Oliver Batchelor, Richard Green, James Atlas
- Abstract要約: 本稿では,木の点雲から分岐骨格の軸を近似する教師付き手法であるSmart-Treeを提案する。
スパースボクセル畳み込みニューラルネットワークは、各入力点の半径と方向を中間軸に向けて抽出する。
実生樹点雲上で,多種合成木集合を用いて定性解析を行い,その方法の訓練と試験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present Smart-Tree, a supervised method for approximating
the medial axes of branch skeletons from a tree's point cloud. A sparse voxel
convolutional neural network extracts each input point's radius and direction
towards the medial axis. A greedy algorithm performs robust skeletonization
using the estimated medial axis. The proposed method provides robustness to
complex tree structures and improves fidelity when dealing with
self-occlusions, complex geometry, touching branches, and varying point
densities. We train and test the method using a multi-species synthetic tree
data set and perform qualitative analysis on a real-life tree point cloud.
Experimentation with synthetic and real-world datasets demonstrates the
robustness of our approach over the current state-of-the-art method. Further
research will focus on training the method on a broader range of tree species
and improving robustness to point cloud gaps. The details to obtain the dataset
are at https://github.com/uc-vision/synthetic-trees.
- Abstract(参考訳): 本稿では,木点雲から枝骨格の内側軸を近似するための教師付き手法であるsmart-treeを提案する。
スパースボクセル畳み込みニューラルネットワークは、各入力点の半径と方向を中間軸に向けて抽出する。
グリーディアルゴリズムは推定メディア軸を用いて頑健な骨格化を行う。
提案手法は, 複雑な木構造に対するロバスト性を提供し, 自己排他性, 複雑な幾何学, 枝の接触, 点密度の変化を扱う際の忠実性を向上させる。
実生樹点雲上で,多種合成木集合を用いて定性解析を行い,その方法の訓練と試験を行った。
合成および実世界のデータセットを用いた実験は、現在の最先端手法に対する我々のアプローチの堅牢性を示している。
さらなる研究は、この手法をより広い範囲の樹木種に訓練し、雲のギャップを突き止めるための頑健性を改善することに焦点をあてる。
データセットを取得するための詳細はhttps://github.com/uc-vision/synthetic-treesにある。
関連論文リスト
- BranchPoseNet: Characterizing tree branching with a deep learning-based pose estimation approach [0.0]
本稿では、ポーズ推定深層学習モデルを用いて、近位レーザー走査データ中の木の輪郭を自動的に検出するパイプラインを提案する。
正確な輪郭検出は、木の成長パターン、木質に関する貴重な洞察を与え、林業価値連鎖全体にわたって木を追跡するバイオメトリックマーカーとして使われる可能性がある。
論文 参考訳(メタデータ) (2024-09-23T07:10:11Z) - Rapid and Precise Topological Comparison with Merge Tree Neural Networks [7.443474354626664]
本稿では,Merge Tree Neural Network (MTNN)について紹介する。
まず,グラフの効率的なエンコーダとして出現したグラフニューラルネットワークをトレーニングして,ベクトル空間にマージツリーを埋め込む方法を示す。
次に、木とノードの埋め込みと新しいトポロジカルアテンション機構を統合することにより、類似性の比較をさらに改善する新しいMTNNモデルを定式化する。
論文 参考訳(メタデータ) (2024-04-08T21:26:04Z) - ViTree: Single-path Neural Tree for Step-wise Interpretable Fine-grained
Visual Categorization [56.37520969273242]
細かな視覚分類のための新しいアプローチであるViTreeを紹介する。
ツリーパスをトラバースすることで、ViTreeは変換処理された機能からパッチを効果的に選択し、情報のあるローカルリージョンをハイライトする。
このパッチとパスの選択性は、ViTreeのモデルの解釈可能性を高め、モデルの内部動作に関するより良い洞察を可能にする。
論文 参考訳(メタデータ) (2024-01-30T14:32:25Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
本稿では,階層構造の回復に着目した凝集クラスタリングアルゴリズムの新しい視点を提案する。
クラスタを最大平均点積でマージし、例えば最小距離やクラスタ内分散でマージしないような、標準的なアルゴリズムの単純な変種を推奨する。
このアルゴリズムにより得られた木は、汎用確率的グラフィカルモデルの下で、データ中の生成的階層構造をボナフェイド推定することを示した。
論文 参考訳(メタデータ) (2023-05-24T11:05:12Z) - DeepTree: Modeling Trees with Situated Latents [8.372189962601073]
そこで本研究では,木を手作業で定義するのではなく,分岐構造に対する発達規則を学習する手法を提案する。
我々は、その振る舞いが本質的な状態によって決定されるため、潜伏状態にあるディープニューラルモデル(deep Neural model)と呼ぶ。
本手法では,複雑なパラメータを定義することなく,多様な木形を生成することができる。
論文 参考訳(メタデータ) (2023-05-09T03:33:14Z) - Occlusion Reasoning for Skeleton Extraction of Self-Occluded Tree
Canopies [5.368313160283353]
ツリースケルトンは、トポロジカル構造をコンパクトに記述し、有用な情報を含む。
本手法では, 可視幹, 枝, かつらを検出するために, インスタンスセグメンテーションネットワークを用いる。
本手法は,高度に隠蔽されたシーンにおいて,ベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-01-20T01:46:07Z) - Tree Detection and Diameter Estimation Based on Deep Learning [0.0]
樹木認識は、自律的な林業活動に向けた重要なビルディングブロックである。
データセットでトレーニングされたディープニューラルネットワークモデルは、木検出の精度90.4%を達成する。
結果は、自律的な倒木作戦への有望な道を提供する。
論文 参考訳(メタデータ) (2022-10-31T15:51:32Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
本研究では,高次元scRNA-seqデータから意味のある木構造を同定する手法を提案する。
次に、低次元空間におけるデータのツリー構造を強調する木バイアスオートエンコーダDTAEを紹介する。
論文 参考訳(メタデータ) (2021-02-11T08:48:48Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
点雲完了は、部分的な観測から3次元形状の点集合表現を用いて完全な幾何学を予測するタスクである。
従来のアプローチでは、不完全点集合によって供給されるエンコーダ・デコーダモデルにより、点雲全体を直接推定するニューラルネットワークが提案されていた。
本稿では、欠落した幾何を計算し、既知の入力と予測点クラウドを融合することに焦点を当てたエンドツーエンドニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-10-08T22:01:23Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。