BoxSnake: Polygonal Instance Segmentation with Box Supervision
- URL: http://arxiv.org/abs/2303.11630v3
- Date: Mon, 24 Jul 2023 14:53:51 GMT
- Title: BoxSnake: Polygonal Instance Segmentation with Box Supervision
- Authors: Rui Yang, Lin Song, Yixiao Ge, Xiu Li
- Abstract summary: We propose a new end-to-end training technique, termed BoxSnake, to achieve effective polygonal instance segmentation using only box annotations for the first time.
Compared with the mask-based weakly-supervised methods, BoxSnake further reduces the performance gap between the predicted segmentation and the bounding box, and shows significant superiority on the Cityscapes dataset.
- Score: 34.487089567665556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Box-supervised instance segmentation has gained much attention as it requires
only simple box annotations instead of costly mask or polygon annotations.
However, existing box-supervised instance segmentation models mainly focus on
mask-based frameworks. We propose a new end-to-end training technique, termed
BoxSnake, to achieve effective polygonal instance segmentation using only box
annotations for the first time. Our method consists of two loss functions: (1)
a point-based unary loss that constrains the bounding box of predicted polygons
to achieve coarse-grained segmentation; and (2) a distance-aware pairwise loss
that encourages the predicted polygons to fit the object boundaries. Compared
with the mask-based weakly-supervised methods, BoxSnake further reduces the
performance gap between the predicted segmentation and the bounding box, and
shows significant superiority on the Cityscapes dataset. The code has been
available publicly.
Related papers
- Skeleton-Guided Instance Separation for Fine-Grained Segmentation in
Microscopy [23.848474219551818]
One of the fundamental challenges in microscopy (MS) image analysis is instance segmentation (IS)
We propose a novel one-stage framework named A2B-IS to address this challenge and enhance the accuracy of IS in MS images.
Our method has been thoroughly validated on two large-scale MS datasets.
arXiv Detail & Related papers (2024-01-18T11:14:32Z) - A Simple Framework for Open-Vocabulary Segmentation and Detection [85.21641508535679]
We present OpenSeeD, a simple Open-vocabulary and Detection framework that jointly learns from different segmentation and detection datasets.
We first introduce a pre-trained text encoder to encode all the visual concepts in two tasks and learn a common semantic space for them.
After pre-training, our model exhibits competitive or stronger zero-shot transferability for both segmentation and detection.
arXiv Detail & Related papers (2023-03-14T17:58:34Z) - Box2Mask: Box-supervised Instance Segmentation via Level-set Evolution [38.88010537144528]
This paper presents a novel single-shot instance segmentation approach, namely Box2Mask.
Box2Mask integrates the classical level-set evolution model into deep neural network learning to achieve accurate mask prediction with only bounding box supervision.
arXiv Detail & Related papers (2022-12-03T09:32:14Z) - H2RBox: Horizonal Box Annotation is All You Need for Oriented Object
Detection [63.66553556240689]
Oriented object detection emerges in many applications from aerial images to autonomous driving.
Many existing detection benchmarks are annotated with horizontal bounding box only which is also less costive than fine-grained rotated box.
This paper proposes a simple yet effective oriented object detection approach called H2RBox.
arXiv Detail & Related papers (2022-10-13T05:12:45Z) - Box-supervised Instance Segmentation with Level Set Evolution [41.19797478617953]
We propose a box-supervised instance segmentation approach, which integrates the classical level set model with deep neural network delicately.
A simple mask supervised SOLOv2 model is adapted to predict the instance-aware mask map as the level set for each instance.
The experimental results on four challenging benchmarks demonstrate the leading performance of our proposed approach.
arXiv Detail & Related papers (2022-07-19T03:59:44Z) - Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using
Bounding Boxes [38.60444957213202]
We look at weakly-supervised 3D semantic instance segmentation.
Key idea is to leverage 3D bounding box labels which are easier and faster to annotate.
We show that it is possible to train dense segmentation models using only bounding box labels.
arXiv Detail & Related papers (2022-06-02T17:59:57Z) - Robust Visual Tracking by Segmentation [103.87369380021441]
Estimating the target extent poses a fundamental challenge in visual object tracking.
We propose a segmentation-centric tracking pipeline that produces a highly accurate segmentation mask.
Our tracker is able to better learn a target representation that clearly differentiates the target in the scene from background content.
arXiv Detail & Related papers (2022-03-21T17:59:19Z) - Box-Adapt: Domain-Adaptive Medical Image Segmentation using Bounding
BoxSupervision [52.45336255472669]
We propose a weakly supervised do-main adaptation setting for deep learning.
Box-Adapt fully explores the fine-grained segmenta-tion mask in the source domain and the weak bounding box in the target domain.
We demonstrate the effectiveness of our method in the liver segmentation task.
arXiv Detail & Related papers (2021-08-19T01:51:04Z) - Object-Guided Instance Segmentation With Auxiliary Feature Refinement
for Biological Images [58.914034295184685]
Instance segmentation is of great importance for many biological applications, such as study of neural cell interactions, plant phenotyping, and quantitatively measuring how cells react to drug treatment.
Box-based instance segmentation methods capture objects via bounding boxes and then perform individual segmentation within each bounding box region.
Our method first detects the center points of the objects, from which the bounding box parameters are then predicted.
The segmentation branch reuses the object features as guidance to separate target object from the neighboring ones within the same bounding box region.
arXiv Detail & Related papers (2021-06-14T04:35:36Z) - Generating Masks from Boxes by Mining Spatio-Temporal Consistencies in
Videos [159.02703673838639]
We introduce a method for generating segmentation masks from per-frame bounding box annotations in videos.
We use our resulting accurate masks for weakly supervised training of video object segmentation (VOS) networks.
The additional data provides substantially better generalization performance leading to state-of-the-art results in both the VOS and more challenging tracking domain.
arXiv Detail & Related papers (2021-01-06T18:56:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.