Advanced Multi-Microscopic Views Cell Semi-supervised Segmentation
- URL: http://arxiv.org/abs/2303.11661v1
- Date: Tue, 21 Mar 2023 08:08:13 GMT
- Title: Advanced Multi-Microscopic Views Cell Semi-supervised Segmentation
- Authors: Fang Hu (1), Xuexue Sun (1), Ke Qing (2), Fenxi Xiao (1), Zhi Wang
(1), Xiaolu Fan (1) ((1) Moore Threads, (2) University of Science and
Technology of China)
- Abstract summary: Deep learning (DL) shows powerful potential in cell segmentation tasks, but suffers from poor generalization.
In this paper, we introduce a novel semi-supervised cell segmentation method called Multi-Microscopic-view Cell semi-supervised (MMCS)
MMCS can train cell segmentation models utilizing less labeled multi-posture cell images with different microscopy well.
It achieves an F1-score of 0.8239 and the running time for all cases is within the time tolerance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although deep learning (DL) shows powerful potential in cell segmentation
tasks, it suffers from poor generalization as DL-based methods originally
simplified cell segmentation in detecting cell membrane boundary, lacking
prominent cellular structures to position overall differentiating. Moreover,
the scarcity of annotated cell images limits the performance of DL models.
Segmentation limitations of a single category of cell make massive practice
difficult, much less, with varied modalities. In this paper, we introduce a
novel semi-supervised cell segmentation method called Multi-Microscopic-view
Cell semi-supervised Segmentation (MMCS), which can train cell segmentation
models utilizing less labeled multi-posture cell images with different
microscopy well. Technically, MMCS consists of Nucleus-assisted global
recognition, Self-adaptive diameter filter, and Temporal-ensembling models.
Nucleus-assisted global recognition adds additional cell nucleus channel to
improve the global distinguishing performance of fuzzy cell membrane boundaries
even when cells aggregate. Besides, self-adapted cell diameter filter can help
separate multi-resolution cells with different morphology properly. It further
leverages the temporal-ensembling models to improve the semi-supervised
training process, achieving effective training with less labeled data.
Additionally, optimizing the weight of unlabeled loss contributed to total loss
also improve the model performance. Evaluated on the Tuning Set of NeurIPS 2022
Cell Segmentation Challenge (NeurIPS CellSeg), MMCS achieves an F1-score of
0.8239 and the running time for all cases is within the time tolerance.
Related papers
- Cell as Point: One-Stage Framework for Efficient Cell Tracking [54.19259129722988]
This paper proposes the novel end-to-end CAP framework to achieve efficient and stable cell tracking in one stage.
CAP abandons detection or segmentation stages and simplifies the process by exploiting the correlation among the trajectories of cell points to track cells jointly.
Cap demonstrates strong cell tracking performance while also being 10 to 55 times more efficient than existing methods.
arXiv Detail & Related papers (2024-11-22T10:16:35Z) - Interpretable Embeddings for Segmentation-Free Single-Cell Analysis in Multiplex Imaging [1.8687965482996822]
Multiplex Imaging (MI) enables the simultaneous visualization of multiple biological markers in separate imaging channels at subcellular resolution.
We propose a segmentation-free deep learning approach that leverages grouped convolutions to learn interpretable embedded features from each imaging channel.
arXiv Detail & Related papers (2024-11-02T11:21:33Z) - Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
This study evaluates cell image segmentation models under optical aberrations from fluorescence and bright field microscopy.
We train and test several segmentation models, including the Otsu threshold method and Mask R-CNN with different network heads.
In contrast, Cellpose 2.0 proves effective for complex cell images under similar conditions.
arXiv Detail & Related papers (2024-04-12T15:45:26Z) - Single-cell Multi-view Clustering via Community Detection with Unknown
Number of Clusters [64.31109141089598]
We introduce scUNC, an innovative multi-view clustering approach tailored for single-cell data.
scUNC seamlessly integrates information from different views without the need for a predefined number of clusters.
We conducted a comprehensive evaluation of scUNC using three distinct single-cell datasets.
arXiv Detail & Related papers (2023-11-28T08:34:58Z) - Mixed Models with Multiple Instance Learning [51.440557223100164]
We introduce MixMIL, a framework integrating Generalized Linear Mixed Models (GLMM) and Multiple Instance Learning (MIL)
Our empirical results reveal that MixMIL outperforms existing MIL models in single-cell datasets.
arXiv Detail & Related papers (2023-11-04T16:42:42Z) - Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
We develop an automatic cell classification pipeline to label microscopy images.
We then train a classification model based on the category labels.
We deploy two types of segmentation models to segment cells with roundish and irregular shapes.
arXiv Detail & Related papers (2023-10-22T08:11:08Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - A Multi-Scale Conditional Deep Model for Tumor Cell Ratio Counting [4.164451715899639]
We propose a method to accurately obtain the ratio of tumor cells over an entire histological slide.
We use deep fully convolutional neural network models trained to detect and classify cells on images of H&E-stained tissue sections.
We show that combining two models, each working at a different magnification allows the system to capture both cell-level details and surrounding context.
arXiv Detail & Related papers (2021-01-27T22:40:33Z) - Split and Expand: An inference-time improvement for Weakly Supervised
Cell Instance Segmentation [71.50526869670716]
We propose a two-step post-processing procedure, Split and Expand, to improve the conversion of segmentation maps to instances.
In the Split step, we split clumps of cells from the segmentation map into individual cell instances with the guidance of cell-center predictions.
In the Expand step, we find missing small cells using the cell-center predictions.
arXiv Detail & Related papers (2020-07-21T14:05:09Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
We introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm.
A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network.
We observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least $5.8%$ on average.
arXiv Detail & Related papers (2020-05-19T11:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.