A large-momentum-transfer matter-wave interferometer to measure the
effect of gravity on positronium
- URL: http://arxiv.org/abs/2303.11798v2
- Date: Sat, 30 Sep 2023 21:20:27 GMT
- Title: A large-momentum-transfer matter-wave interferometer to measure the
effect of gravity on positronium
- Authors: G. Vinelli, F. Castelli, R. Ferragut, M. Rom\'e, M. Sacerdoti, L.
Salvi, V. Toso, M. Giammarchi, G. Rosi and G. M. Tino
- Abstract summary: A Mach-Zehnder matter-wave interferometer has been designed to operate with single-photon transitions.
Within less than one year, the acquisition time is sufficient to achieve a 10% accuracy level in measuring positronium gravitational acceleration.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper reports the study of a new interferometric configuration to
measure the effect of gravity on positronium. A Mach-Zehnder matter-wave
interferometer has been designed to operate with single-photon transitions and
to transfer high momentum to a 200 eV positronium beam. The work shows the
results and methods used to simulate the interferometer and estimate the
operating parameters and the time needed to perform the experiment. It has been
estimated that within less than one year, the acquisition time is sufficient to
achieve a 10\% accuracy level in measuring positronium gravitational
acceleration, even with a poorly collimated beam, which is significant for
theoretical models describing matter-antimatter symmetry. These results pave
the way for single photon transition large momentum transfer interferometry
with fast atomic beams, which is particularly useful for studies with
antimatter and unstable atoms.
Related papers
- Optimal Floquet Engineering for Large Scale Atom Interferometers [0.0]
We present a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice.
We demonstrate an unprecedented Large Momentum Transfer (LMT) interferometer, with a momentum separation of 600 photon recoils between its two arms.
Our study shows that Floquet engineering is a promising tool for exploring new frontiers in quantum physics at large scales.
arXiv Detail & Related papers (2024-03-21T12:05:58Z) - A single-photon large-momentum-transfer atom interferometry scheme for Sr or Yb atoms with application to determining the fine-structure constant [0.0]
We propose an intermediate-scale differential atom interferometer to measure the photon-recoil of neutral atomic species with a single-photon optical clock transition.
For Sr and Yb, we find an atom interferometer of height 3m to be sufficient for an absolute mass measurement precision of $Delta m / m sim 1times 10-11$ with current technology.
arXiv Detail & Related papers (2024-03-15T11:52:14Z) - Atom interferometer as a freely falling clock for time-dilation
measurements [0.14188748936919127]
Light-pulse atom interferometers based on single-photon transitions are a promising tool for gravitational-wave detection in the mid-frequency band.
We present a novel measurement scheme that enables their use as freely falling clocks directly measuring relativistic time-dilation effects.
arXiv Detail & Related papers (2024-02-16T20:38:03Z) - Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - Atomic diffraction from single-photon transitions in gravity and
Standard-Model extensions [49.26431084736478]
We study single-photon transitions, both magnetically-induced and direct ones, in gravity and Standard-Model extensions.
We take into account relativistic effects like the coupling of internal to center-of-mass degrees of freedom, induced by the mass defect.
arXiv Detail & Related papers (2023-09-05T08:51:42Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Tailoring multi-loop atom interferometers with adjustable momentum
transfer [0.0]
Multi-loop matter-wave interferometers are essential in quantum sensing to measure the derivatives of physical quantities in time or space.
imperfections of the matter-wave mirrors create spurious paths that scramble the signal of interest.
Here we demonstrate a method of adjustable momentum transfer that prevents the recombination of the spurious paths in a double-loop atom interferometer aimed at measuring rotation rates.
arXiv Detail & Related papers (2020-06-15T12:46:30Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.