論文の概要: Physics Informed Neural Networks for Phase Locked Loop Transient
Stability Assessment
- arxiv url: http://arxiv.org/abs/2303.12116v1
- Date: Tue, 21 Mar 2023 18:09:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 16:23:41.986524
- Title: Physics Informed Neural Networks for Phase Locked Loop Transient
Stability Assessment
- Title(参考訳): 位相ロックループ過渡安定度評価のための物理情報ニューラルネットワーク
- Authors: Rahul Nellikkath, Andreas Venzke, Mohammad Kazem Bakhshizadeh, Ilgiz
Murzakhanov and Spyros Chatzivasileiadis
- Abstract要約: 相ロックループ(PLL)のような電力電子制御器を用いて、グリッドとグリッドの同期性を維持することで、グリッドの故障時に高速な過渡的な動作を引き起こす。
本稿では,少ないラベル付きトレーニングデータを用いて,故障時のコントローラの過渡的ダイナミクスを正確に予測するニューラルネットワークアルゴリズムを提案する。
このアルゴリズムの性能は、CIGREベンチマークモデルC4.49のPSCADにおけるROMとEMTシミュレーションと比較され、グリッドインピーダンスの異なるコントローラの軌道とROAを正確に近似する能力を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A significant increase in renewable energy production is necessary to achieve
the UN's net-zero emission targets for 2050. Using power-electronic
controllers, such as Phase Locked Loops (PLLs), to keep grid-tied renewable
resources in synchronism with the grid can cause fast transient behavior during
grid faults leading to instability. However, assessing all the probable
scenarios is impractical, so determining the stability boundary or region of
attraction (ROA) is necessary. However, using EMT simulations or Reduced-order
models (ROMs) to accurately determine the ROA is computationally expensive.
Alternatively, Machine Learning (ML) models have been proposed as an efficient
method to predict stability. However, traditional ML algorithms require large
amounts of labeled data for training, which is computationally expensive. This
paper proposes a Physics-Informed Neural Network (PINN) architecture that
accurately predicts the nonlinear transient dynamics of a PLL controller under
fault with less labeled training data. The proposed PINN algorithm can be
incorporated into conventional simulations, accelerating EMT simulations or
ROMs by over 100 times. The PINN algorithm's performance is compared against a
ROM and an EMT simulation in PSCAD for the CIGRE benchmark model C4.49,
demonstrating its ability to accurately approximate trajectories and ROAs of a
PLL controller under varying grid impedance.
- Abstract(参考訳): 2050年の国連の純ゼロ排出目標を達成するためには、再生可能エネルギー生産の大幅な増加が必要である。
相ロックループ(PLL)のような電力電子制御器を用いて、グリッドとグリッドの同期性を維持することで、グリッドの故障時に高速な過渡的な動作を引き起こす。
しかし,すべてのシナリオを評価することは現実的ではないため,roa (stableability boundary or region of attraction) を決定する必要がある。
しかし、ROAを正確に決定するためにEMTシミュレーションやROM(Reduceed-order Model)を用いると、計算コストがかかる。
あるいは、安定性を予測する効率的な方法として機械学習モデル(ML)が提案されている。
しかし、従来のMLアルゴリズムは大量のラベル付きデータをトレーニングに必要としており、これは計算コストが高い。
本稿では,PLLコントローラの非線形過渡ダイナミクスを,ラベル付きトレーニングデータが少ない状態で正確に予測する物理情報ニューラルネットワーク(PINN)アーキテクチャを提案する。
提案する pinn アルゴリズムは,emt シミュレーションや rom を 100 倍以上高速化する従来のシミュレーションに組み込むことができる。
PINNアルゴリズムの性能は、CIGREベンチマークモデルC4.49のPSCADにおけるROMとEMTシミュレーションと比較され、グリッドインピーダンスの異なるPLLコントローラの軌道とROAを正確に近似する能力を示している。
関連論文リスト
- Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
本稿では,新しい基礎モデルのための統合型分割学習と超次元計算フレームワークを提案する。
この新しいアプローチは通信コスト、計算負荷、プライバシーリスクを低減し、Metaverseのリソース制約されたエッジデバイスに適している。
論文 参考訳(メタデータ) (2024-08-26T17:03:14Z) - A Fast Algorithm to Simulate Nonlinear Resistive Networks [0.6526824510982799]
線形不等式制約を持つ二次計画問題として,非線形抵抗ネットワークのシミュレーションのための新しい手法を提案する。
シミュレーション手法は既存のSPICEシミュレーションよりも優れており、最大327倍のネットワークを160倍高速でトレーニングすることができる。
論文 参考訳(メタデータ) (2024-02-18T18:33:48Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
機械学習を用いて乱流シミュレーションのための低次/サロゲートモデルを開発することを目的としている。
異なるモデル構造が解析され、U-NET構造は標準FNOよりも精度と安定性が良い。
論文 参考訳(メタデータ) (2023-07-25T14:09:53Z) - Self-learning locally-optimal hypertuning using maximum entropy, and
comparison of machine learning approaches for estimating fatigue life in
composite materials [0.0]
疲労損傷を予測するための最大エントロピーの原理に基づくML近傍近似アルゴリズムを開発した。
予測は、他のMLアルゴリズムと同様、高いレベルの精度を達成する。
論文 参考訳(メタデータ) (2022-10-19T12:20:07Z) - RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network [6.309365332210523]
本稿では、単純なODEとデータの一部をトレーニングしたニューラルネットワークを用いて、PINN(RAMP-Net)を介してロバスト適応MPCフレームワークを提案する。
我々は,SOTA回帰に基づく2つのMPC法と比較して,0.5~1.75m/sの追跡誤差を7.8%から43.2%,8.04%から61.5%削減した。
論文 参考訳(メタデータ) (2022-09-19T16:11:51Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
本稿では,集約信号とループ検出データを用いた時系列予測フレームワークを提案する。
我々は、最先端の機械学習モデルを用いて、将来の信号位相の持続時間を予測する。
スイスのチューリッヒの信号制御システムから得られた経験的データに基づいて、機械学習モデルが従来の予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T07:50:43Z) - GNN4REL: Graph Neural Networks for Predicting Circuit Reliability
Degradation [7.650966670809372]
我々はグラフニューラルネットワーク(GNN)を用いて、プロセスの変動とデバイス老化が回路内の任意の経路の遅延に与える影響を正確に推定する。
GNN4RELは、工業用14nm計測データに対して校正されたFinFET技術モデルに基づいて訓練されている。
我々は、平均絶対誤差を0.01ポイントまで下げて、全経路(特に数秒以内)の遅延劣化をうまく見積もった。
論文 参考訳(メタデータ) (2022-08-04T20:09:12Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
本稿では、新しい未知のトポロジや未知の予測タスクに適応可能な回路表現を学習するための教師付き事前学習手法を提案する。
異なる回路の変動位相構造に対処するため、各回路をグラフとして記述し、グラフニューラルネットワーク(GNN)を用いてノード埋め込みを学習する。
出力ノード電圧の予測における事前学習GNNは、新しい未知のトポロジや新しい回路レベル特性の予測に適応可能な学習表現を促進することができることを示す。
論文 参考訳(メタデータ) (2022-03-29T21:18:47Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - CSM-NN: Current Source Model Based Logic Circuit Simulation -- A Neural
Network Approach [5.365198933008246]
CSM-NNは、最適化されたニューラルネットワーク構造と処理アルゴリズムを備えたスケーラブルなシミュレーションフレームワークである。
実験によると、CSM-NNはCPU上で動作する最先端のソースモデルベースのシミュレータと比較して、シミュレーション時間を最大6倍に短縮する。
CSM-NNはまた、HSPICEと比較して2%以下の誤差で高い精度のレベルを提供する。
論文 参考訳(メタデータ) (2020-02-13T00:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。