Physics Informed Neural Networks for Phase Locked Loop Transient
Stability Assessment
- URL: http://arxiv.org/abs/2303.12116v1
- Date: Tue, 21 Mar 2023 18:09:20 GMT
- Title: Physics Informed Neural Networks for Phase Locked Loop Transient
Stability Assessment
- Authors: Rahul Nellikkath, Andreas Venzke, Mohammad Kazem Bakhshizadeh, Ilgiz
Murzakhanov and Spyros Chatzivasileiadis
- Abstract summary: Using power-electronic controllers, such as Phase Locked Loops (PLLs), to keep grid-tied renewable resources in synchronism with the grid can cause fast transient behavior during grid faults leading to instability.
This paper proposes a Neural Network algorithm that accurately predicts the transient dynamics of a controller under fault with less labeled training data.
The algorithm's performance is compared against a ROM and an EMT simulation in PSCAD for the CIGRE benchmark model C4.49, demonstrating its ability to accurately approximate trajectories and ROAs of a controller under varying grid impedance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A significant increase in renewable energy production is necessary to achieve
the UN's net-zero emission targets for 2050. Using power-electronic
controllers, such as Phase Locked Loops (PLLs), to keep grid-tied renewable
resources in synchronism with the grid can cause fast transient behavior during
grid faults leading to instability. However, assessing all the probable
scenarios is impractical, so determining the stability boundary or region of
attraction (ROA) is necessary. However, using EMT simulations or Reduced-order
models (ROMs) to accurately determine the ROA is computationally expensive.
Alternatively, Machine Learning (ML) models have been proposed as an efficient
method to predict stability. However, traditional ML algorithms require large
amounts of labeled data for training, which is computationally expensive. This
paper proposes a Physics-Informed Neural Network (PINN) architecture that
accurately predicts the nonlinear transient dynamics of a PLL controller under
fault with less labeled training data. The proposed PINN algorithm can be
incorporated into conventional simulations, accelerating EMT simulations or
ROMs by over 100 times. The PINN algorithm's performance is compared against a
ROM and an EMT simulation in PSCAD for the CIGRE benchmark model C4.49,
demonstrating its ability to accurately approximate trajectories and ROAs of a
PLL controller under varying grid impedance.
Related papers
- Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
We propose an integrated federated split learning and hyperdimensional computing framework for emerging foundation models.
This novel approach reduces communication costs, computation load, and privacy risks, making it suitable for resource-constrained edge devices in the Metaverse.
arXiv Detail & Related papers (2024-08-26T17:03:14Z) - A Fast Algorithm to Simulate Nonlinear Resistive Networks [0.6526824510982799]
We introduce a novel approach for the simulation of nonlinear resistive networks, which we frame as a quadratic programming problem with linear inequality constraints.
Our simulation methodology significantly outperforms existing SPICE-based simulations, enabling the training of networks up to 327 times larger at speeds 160 times faster.
arXiv Detail & Related papers (2024-02-18T18:33:48Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
It aims to develop reduced-order/surrogate models for turbulent flow simulations using Machine Learning.
Different model structures are analyzed, with U-NET structures performing better than the standard FNO in accuracy and stability.
arXiv Detail & Related papers (2023-07-25T14:09:53Z) - Self-learning locally-optimal hypertuning using maximum entropy, and
comparison of machine learning approaches for estimating fatigue life in
composite materials [0.0]
We develop an ML nearest-neighbors-alike algorithm based on the principle of maximum entropy to predict fatigue damage.
The predictions achieve a good level of accuracy, similar to other ML algorithms.
arXiv Detail & Related papers (2022-10-19T12:20:07Z) - RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network [6.309365332210523]
We propose a Robust Adaptive MPC framework via PINNs (RAMP-Net), which uses a neural network trained partly from simple ODEs and partly from data.
We report 7.8% to 43.2% and 8.04% to 61.5% reduction in tracking errors for speeds ranging from 0.5 to 1.75 m/s compared to two SOTA regression based MPC methods.
arXiv Detail & Related papers (2022-09-19T16:11:51Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - GNN4REL: Graph Neural Networks for Predicting Circuit Reliability
Degradation [7.650966670809372]
We employ graph neural networks (GNNs) to accurately estimate the impact of process variations and device aging on the delay of any path within a circuit.
GNN4REL is trained on a FinFET technology model that is calibrated against industrial 14nm measurement data.
We successfully estimate delay degradations of all paths -- notably within seconds -- with a mean absolute error down to 0.01 percentage points.
arXiv Detail & Related papers (2022-08-04T20:09:12Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - CSM-NN: Current Source Model Based Logic Circuit Simulation -- A Neural
Network Approach [5.365198933008246]
CSM-NN is a scalable simulation framework with optimized neural network structures and processing algorithms.
Experiments show that CSM-NN reduces the simulation time by up to $6times$ compared to a state-of-the-art current source model based simulator running on a CPU.
CSM-NN also provides high accuracy levels, with less than $2%$ error, compared to HSPICE.
arXiv Detail & Related papers (2020-02-13T00:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.