Spin-motion coupling in a circular Rydberg state quantum simulator: case
of two atoms
- URL: http://arxiv.org/abs/2303.12150v2
- Date: Mon, 27 Mar 2023 08:06:44 GMT
- Title: Spin-motion coupling in a circular Rydberg state quantum simulator: case
of two atoms
- Authors: Paul M\'ehaignerie, Cl\'ement Sayrin, Jean-Michel Raimond, Michel
Brune, Guillaume Roux
- Abstract summary: Circular Rydberg atoms are remarkable tools for the quantum simulation of spin arrays.
We study the interplay between the spin exchange and motional dynamics in the simple case of two interacting circular Rydberg atoms confined in harmonic traps.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rydberg atoms are remarkable tools for the quantum simulation of spin arrays.
Circular Rydberg atoms open the way to simulations over very long time scales,
using a combination of laser trapping of the atoms and spontaneous-emission
inhibition, as shown in the proposal of a XXZ spin-array simulator based on
chains of trapped circular atoms [T.L. Nguyen $\textit{et al.}$, Phys. Rev. X
8, 011032 (2018)]. Such simulators could reach regimes (thermalization, glassy
dynamics) that are out of the reach of those based on ordinary,
low-angular-momentum short-lived Rydberg atoms. Over the promised long time
scales, the unavoidable coupling of the spin dynamics with the atomic motion in
the traps may play an important role. We study here the interplay between the
spin exchange and motional dynamics in the simple case of two interacting
circular Rydberg atoms confined in harmonic traps. The time evolution is solved
exactly when the position dependence of the dipole-dipole interaction terms can
be linearized over the extension of the atomic motion. We present numerical
simulations in more complex cases, using the realistic parameters of the
simulator proposal. We discuss three applications. First, we show that
realistic experimental parameters lead to a regime in which atomic and spin
dynamics become fully entangled, generating interesting non-classical motional
states. We also show that, in other parameter regions, the spin dynamics
notably depends on the initial temperature of the atoms in the trap, providing
a sensitive motional thermometry method. Last, and most importantly, we discuss
the range of parameters in which the motion has negligible influence over the
spin dynamics.
Related papers
- Emergent disorder and sub-ballistic dynamics in quantum simulations of the Ising model using Rydberg atom arrays [1.6982404417199617]
Rydberg atom arrays with Van der Waals interactions provide a controllable path to simulate the locally connected transverse-field Ising model (TFIM)
We experimentally investigate the physics of TFIM far from equilibrium and uncover significant deviations from the theoretical predictions.
Our findings highlight the crucial role of atom motion in the many-body dynamics of Rydberg atom arrays at the TFIM limit.
arXiv Detail & Related papers (2024-11-20T19:00:01Z) - Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Amorphous quantum magnets in a two-dimensional Rydberg atom array [44.99833362998488]
We propose to explore amorphous quantum magnets with an analog quantum simulator.
We first present an algorithm to generate amorphous quantum magnets, suitable for Rydberg simulators of the Ising model.
We then use semiclassical approaches to get a preliminary insight of the physics of the model.
arXiv Detail & Related papers (2024-02-05T10:07:10Z) - Strong Spin-Motion Coupling in the Ultrafast Dynamics of Rydberg Atoms [0.0]
We show a strong spin-motion coupling emerging from the large variation of the interaction potential over the wavefunction spread.
We propose a novel approach to tune arbitrarily the strength of the spin-motion coupling relative to the motional energy scale set by trapping potentials.
arXiv Detail & Related papers (2023-11-27T07:04:02Z) - Proposal for simulating quantum spin models with the Dzyaloshinskii-Moriya interaction using Rydberg atoms and the construction of asymptotic quantum many-body scar states [0.0]
We have developed a method to simulate quantum spin models with the Dzyaloshinskii-Moriya interaction (DMI) using Rydberg atom quantum simulators.
Our approach involves a two-photon Raman transition and a transformation to the spin-rotating frame.
As a model that can be simulated in our setup but not in solid-state systems, we consider an $S=frac12$ spin chain with a Hamiltonian consisting of Zeeman energy.
arXiv Detail & Related papers (2023-06-08T23:34:01Z) - Quantum simulation of the central spin model with a Rydberg atom and
polar molecules in optical tweezers [0.0]
We propose an ultracold quantum simulator of a central spin model with XX (spin-exchanging) interactions.
By mapping internal particle states to spin states, spin-exchanging interactions can be simulated.
We numerically analyze two example dynamical scenarios which can be simulated in this setup.
arXiv Detail & Related papers (2023-02-28T17:17:59Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Microwave-engineering of programmable XXZ Hamiltonians in arrays of
Rydberg atoms [0.0]
We use the resonant dipole-dipole interaction between Rydberg atoms and a periodic external microwave field to engineer XXZ spin Hamiltonians with tunable anisotropies.
The atoms are placed in 1D and 2D arrays of optical tweezers, allowing us to study iconic situations in spin physics.
We first benchmark the Hamiltonian engineering for two atoms, and then demonstrate the freezing of the magnetization on an initially magnetized 2D array.
arXiv Detail & Related papers (2021-07-30T07:05:51Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.