Quantum simulation of the central spin model with a Rydberg atom and
polar molecules in optical tweezers
- URL: http://arxiv.org/abs/2302.14774v2
- Date: Tue, 28 Nov 2023 20:06:46 GMT
- Title: Quantum simulation of the central spin model with a Rydberg atom and
polar molecules in optical tweezers
- Authors: Jacek Dobrzyniecki, Micha{\l} Tomza
- Abstract summary: We propose an ultracold quantum simulator of a central spin model with XX (spin-exchanging) interactions.
By mapping internal particle states to spin states, spin-exchanging interactions can be simulated.
We numerically analyze two example dynamical scenarios which can be simulated in this setup.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Central spin models, where a single spinful particle interacts with a spin
environment, find wide application in quantum information technology and can be
used to describe, e.g., the decoherence of a qubit over time. We propose a
method of realizing an ultracold quantum simulator of a central spin model with
XX (spin-exchanging) interactions. The proposed system consists of a single
Rydberg atom ("central spin") and surrounding polar molecules ("bath spins"),
coupled to each other via dipole-dipole interactions. By mapping internal
particle states to spin states, spin-exchanging interactions can be simulated.
As an example system geometry, we consider a ring-shaped arrangement of bath
spins, and show how it allows us to exact precise control over the interaction
strengths. We numerically analyze two example dynamical scenarios which can be
simulated in this setup: a decay of central spin polarization, which can
represent qubit decoherence in a disordered environment, and a transfer of an
input spin state to a specific output spin, which can represent the
transmission of a single bit across a quantum network. We demonstrate that this
setup allows us to realize a central spin model with highly tunable parameters
and geometry, for applications in quantum science and technology.
Related papers
- Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Spin-motion coupling in a circular Rydberg state quantum simulator: case
of two atoms [0.0]
Circular Rydberg atoms are remarkable tools for the quantum simulation of spin arrays.
We study the interplay between the spin exchange and motional dynamics in the simple case of two interacting circular Rydberg atoms confined in harmonic traps.
arXiv Detail & Related papers (2023-03-21T19:16:24Z) - Digital Quantum Simulation of the Spin-Boson Model under Open System
Dynamics [1.5727276506140881]
We study how to simulate open quantum dynamics in a digital quantum computer.
We show that the key aspect is to simulate the unitary portion of the dynamics, while the dissipative part can lead to a more noise-resistant simulation.
arXiv Detail & Related papers (2022-10-28T06:03:35Z) - Quantum simulation of spin-1/2 XYZ model using solid-state spin centers [2.0317687721731175]
We propose a novel solid-state platform for creating quantum simulators based on implanted spin centers in semiconductors.
We show that under the presence of an external magnetic field, an array of $S=1$ spin centers interacting through magnetic dipole-dipole interaction can be mapped into an effective spin-half system.
This system presents a wide range of quantum phases and critical behaviors that can be controlled via magnetic field and orientational arrangement of the spin centers.
arXiv Detail & Related papers (2022-09-15T17:57:43Z) - Tunable itinerant spin dynamics with polar molecules [2.830197032154302]
Ising and spin exchange interactions are precisely tuned by varying the strength and orientation of an electric field.
Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics.
arXiv Detail & Related papers (2022-08-03T16:57:36Z) - Dynamic quantum-enhanced sensing without entanglement in central spin
systems [1.9888283697653608]
We propose a quantum many-spin system composed of a central spin interacting with many surrounding spins.
We find that the Heisenberg scaling can be reached while the probe state only needs to be a product state.
Our result indicates that the dynamic quantum-enhanced sensing scheme seems feasible in realistic quantum central spin systems.
arXiv Detail & Related papers (2022-04-30T15:24:21Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.