論文の概要: Automated deep learning segmentation of high-resolution 7 T postmortem
MRI for quantitative analysis of structure-pathology correlations in
neurodegenerative diseases
- arxiv url: http://arxiv.org/abs/2303.12237v2
- Date: Tue, 17 Oct 2023 20:50:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-19 20:54:07.165203
- Title: Automated deep learning segmentation of high-resolution 7 T postmortem
MRI for quantitative analysis of structure-pathology correlations in
neurodegenerative diseases
- Title(参考訳): 神経変性疾患における構造-病理相関の定量的解析のための高分解能7TMRIのディープラーニング分割
- Authors: Pulkit Khandelwal, Michael Tran Duong, Shokufeh Sadaghiani, Sydney
Lim, Amanda Denning, Eunice Chung, Sadhana Ravikumar, Sanaz Arezoumandan,
Claire Peterson, Madigan Bedard, Noah Capp, Ranjit Ittyerah, Elyse Migdal,
Grace Choi, Emily Kopp, Bridget Loja, Eusha Hasan, Jiacheng Li, Alejandra
Bahena, Karthik Prabhakaran, Gabor Mizsei, Marianna Gabrielyan, Theresa
Schuck, Winifred Trotman, John Robinson, Daniel Ohm, Edward B. Lee, John Q.
Trojanowski, Corey McMillan, Murray Grossman, David J. Irwin, John Detre, M.
Dylan Tisdall, Sandhitsu R. Das, Laura E.M. Wisse, David A. Wolk, Paul A.
Yushkevich
- Abstract要約: 7T全体MRIスキャナーにT2wシークエンスを用いて0.3 mm$3$等方性で画像化した,高分解能のヒト脳組織標本135点について報告する。
また、7Tで0.28mm3および0.16mm3等方性T2*w FLASH配列を取得。
- 参考スコア(独自算出の注目度): 33.191270998887326
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Postmortem MRI allows brain anatomy to be examined at high resolution and to
link pathology measures with morphometric measurements. However, automated
segmentation methods for brain mapping in postmortem MRI are not well
developed, primarily due to limited availability of labeled datasets, and
heterogeneity in scanner hardware and acquisition protocols. In this work, we
present a high resolution of 135 postmortem human brain tissue specimens imaged
at 0.3 mm$^{3}$ isotropic using a T2w sequence on a 7T whole-body MRI scanner.
We developed a deep learning pipeline to segment the cortical mantle by
benchmarking the performance of nine deep neural architectures, followed by
post-hoc topological correction. We then segment four subcortical structures
(caudate, putamen, globus pallidus, and thalamus), white matter
hyperintensities, and the normal appearing white matter. We show generalizing
capabilities across whole brain hemispheres in different specimens, and also on
unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence
at 7T. We then compute localized cortical thickness and volumetric measurements
across key regions, and link them with semi-quantitative neuropathological
ratings. Our code, Jupyter notebooks, and the containerized executables are
publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upenn
- Abstract(参考訳): 死後MRIでは、高分解能で脳解剖を検査し、病理計測と形態計測を関連付けることができる。
しかし, 後頭部MRIにおける脳波の自動分割法は, ラベル付きデータセットが限られており, スキャナハードウェアと取得プロトコルの不均一性のため, 十分に開発されていない。
本研究では、7T全体MRIスキャナー上でT2w配列を用いて0.3 mm$^{3}$等方性で画像化された脳組織標本135点の高分解能を示す。
そこで我々は,9つの深部神経アーキテクチャのパフォーマンスをベンチマークし,その後にポストホックトポロジカルな補正を施して,皮質マントルを分割する深部学習パイプラインを開発した。
次に, 4つの皮質下構造(緑膿菌, 緑膿菌, 視床), 白色物質過大度, 正常に出現する白色物質を分類した。
また,0.28 mm^3 および 0.16 mm^3 の等方性 t2*w フラッシュ配列を 7t で取得した未検出画像について,脳半球全体の一般化能を示した。
次に,大脳皮質の局所的な厚みと体積測定を重要領域にわたって計算し,半定量的神経病理学的評価と結びつけた。
私たちのコード、jupyterノートブック、コンテナ化された実行ファイルは、https://pulkit-khandelwal.github.io/exvivo-brain-upenn.com/で公開されている。
関連論文リスト
- Surface-based parcellation and vertex-wise analysis of ultra high-resolution ex vivo 7 tesla MRI in Alzheimer's disease and related dementias [32.61675068837929]
アルツハイマー病と関連する認知症にまたがる等方分解能の0.3mmで、82個の脳半球外T2wの1-of-in-kindデータセットを提出した。
Desikan-Killiany-Tourville (DKT) 脳のアトラスを用いて,超高分解能の生体外脳組織を母体空間分解能で解析するために,高速で使いやすく自動表面ベースパイプラインを開発した。
論文 参考訳(メタデータ) (2024-03-28T15:27:34Z) - FastSurfer-HypVINN: Automated sub-segmentation of the hypothalamus and
adjacent structures on high-resolutional brain MRI [3.869627124798774]
視床下部のサブセグメンテーションのためのHypVINNという,新しい,高速で,完全自動化されたディープラーニング手法を提案する。
我々は,視床下部の容積効果を再現するためのセグメンテーション精度,一般化可能性,セッション内テストの信頼性,感度に関して,我々のモデルを広範囲に検証した。
論文 参考訳(メタデータ) (2023-08-24T12:26:38Z) - Tissue Segmentation of Thick-Slice Fetal Brain MR Scans with Guidance
from High-Quality Isotropic Volumes [52.242103848335354]
本稿では,高品位等方性ボリュームから学習した知識を高密度スライススキャンの正確な組織セグメント化のために効率的に伝達するC2DA-Netを提案する。
我々のC2DA-Netは、注釈のない厚いスライススキャンで組織分画をガイドするために、注釈付き等方性ボリュームの小さなセットを十分に利用できる。
論文 参考訳(メタデータ) (2023-08-13T12:51:15Z) - Cortical analysis of heterogeneous clinical brain MRI scans for
large-scale neuroimaging studies [2.930354460501359]
皮質の表面分析は、例えば、皮質登録、パーセル化、厚さ推定など、MRIによるヒトの神経イメージングにおいてユビキタスである。
臨床脳MRI検査における大脳皮質再建, 登録, パーセレーション, 厚み推定法について検討した。
論文 参考訳(メタデータ) (2023-05-02T23:36:06Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
本稿では,各脊椎の剛性と容積を保存し,登録精度を最大化しながら,弱教師付き深層学習フレームワークを提案する。
また,CTにおける椎体自動分節化はMRIと対比してより正確な結果をもたらすため,CTラベルマップのみに依存するよう,これらの損失を特に設計する。
以上の結果から, 解剖学的認識による損失の増大は, 精度を維持しつつも, 推測変換の妥当性を高めることが示唆された。
論文 参考訳(メタデータ) (2022-05-16T10:59:55Z) - Gray Matter Segmentation in Ultra High Resolution 7 Tesla ex vivo T2w
MRI of Human Brain Hemispheres [9.196429840458629]
我々は、32個のヒト脳標本からなる高解像度7個のTeslaデータセットを提示する。
9つのニューラルネットワークアーキテクチャの皮質マントルセグメンテーション性能をベンチマークした。
異なる試料の脳半球全体、および異なる磁場強度および撮像配列で得られた見えない画像に対して、優れた汎化能力を示す。
論文 参考訳(メタデータ) (2021-10-14T21:01:18Z) - 3D Reconstruction and Segmentation of Dissection Photographs for
MRI-free Neuropathology [2.4984854046383624]
脳郭清画像から全脳像量を再構成・分画する手法を提案する。
3次元再構成は、MRI以外の参照ボリュームを使用する共同登録フレームワークによって達成される。
我々は,Diceスコアとボリューム相関を用いて,24脳のデータセット上で本手法の評価を行った。
論文 参考訳(メタデータ) (2020-09-11T18:21:00Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。