An efficient wavelet-based physics-informed neural networks for singularly perturbed problems
- URL: http://arxiv.org/abs/2409.11847v2
- Date: Thu, 20 Feb 2025 10:29:12 GMT
- Title: An efficient wavelet-based physics-informed neural networks for singularly perturbed problems
- Authors: Himanshu Pandey, Anshima Singh, Ratikanta Behera,
- Abstract summary: Physics-informed neural networks (PINNs) are a class of deep learning models that utilize physics in the form of differential equations to address complex problems.
We present a wavelet-based PINNs model to tackle solutions of differential equations with rapid oscillations, steep gradients, or singular behavior.
The proposed model significantly improves with traditional PINNs, recently developed wavelet-based PINNs, and other state-of-the-art methods.
- Score: 0.0
- License:
- Abstract: Physics-informed neural networks (PINNs) are a class of deep learning models that utilize physics in the form of differential equations to address complex problems, including ones that may involve limited data availability. However, tackling solutions of differential equations with rapid oscillations, steep gradients, or singular behavior becomes challenging for PINNs. Considering these challenges, we designed an efficient wavelet-based PINNs (W-PINNs) model to address this class of differential equations. Here, we represent the solution in wavelet space using a family of smooth-compactly supported wavelets. This framework represents the solution of a differential equation with significantly fewer degrees of freedom while still retaining the dynamics of complex physical phenomena. The architecture allows the training process to search for a solution within the wavelet space, making the process faster and more accurate. Further, the proposed model does not rely on automatic differentiations for derivatives involved in differential equations and does not require any prior information regarding the behavior of the solution, such as the location of abrupt features. Thus, through a strategic fusion of wavelets with PINNs, W-PINNs excel at capturing localized nonlinear information, making them well-suited for problems showing abrupt behavior in certain regions, such as singularly perturbed and multiscale problems. The efficiency and accuracy of the proposed neural network model are demonstrated in various 1D and 2D test problems, i.e., the FitzHugh-Nagumo (FHN) model, the Helmholtz equation, the Maxwell's equation, lid-driven cavity flow, and the Allen-Cahn equation, along with other highly singularly perturbed nonlinear differential equations. The proposed model significantly improves with traditional PINNs, recently developed wavelet-based PINNs, and other state-of-the-art methods.
Related papers
- Stiff Transfer Learning for Physics-Informed Neural Networks [1.5361702135159845]
We propose a novel approach, stiff transfer learning for physics-informed neural networks (STL-PINNs) to tackle stiff ordinary differential equations (ODEs) and partial differential equations (PDEs)
Our methodology involves training a Multi-Head-PINN in a low-stiff regime, and obtaining the final solution in a high stiff regime by transfer learning.
This addresses the failure modes related to stiffness in PINNs while maintaining computational efficiency by computing "one-shot" solutions.
arXiv Detail & Related papers (2025-01-28T20:27:38Z) - Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNs are used to study vortex solutions in 2+1 dimensional nonlinear partial differential equations.
We consider PINNs with conservation laws (referred to as cPINNs), deformations of the initial profiles, and a friction approach to improve the identification's resolution.
arXiv Detail & Related papers (2024-10-23T08:29:13Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
The recently proposed physics-informed neural network (PINN) has achieved successful applications in solving a wide range of partial differential equations (PDEs)
In this paper, we solve the acoustic and visco-acoustic scattered-field wave equation in the frequency domain with PINN instead of the wave equation to remove source perturbation.
We show that PML and quadratic neurons improve the results as well as attenuation and discuss the reason for this improvement.
arXiv Detail & Related papers (2022-08-16T13:29:01Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Physics-informed attention-based neural network for solving non-linear
partial differential equations [6.103365780339364]
Physics-Informed Neural Networks (PINNs) have enabled significant improvements in modelling physical processes.
PINNs are based on simple architectures, and learn the behavior of complex physical systems by optimizing the network parameters to minimize the residual of the underlying PDE.
Here, we address the question of which network architectures are best suited to learn the complex behavior of non-linear PDEs.
arXiv Detail & Related papers (2021-05-17T14:29:08Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
We develop a nonlocal PINN approach using the Peridynamic Differential Operator (PDDO)---a numerical method which incorporates long-range interactions and removes spatial derivatives in the governing equations.
Because the PDDO functions can be readily incorporated in the neural network architecture, the nonlocality does not degrade the performance of modern deep-learning algorithms.
We document the superior behavior of nonlocal PINN with respect to local PINN in both solution accuracy and parameter inference.
arXiv Detail & Related papers (2020-05-31T06:26:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.