EDGI: Equivariant Diffusion for Planning with Embodied Agents
- URL: http://arxiv.org/abs/2303.12410v2
- Date: Thu, 19 Oct 2023 08:53:18 GMT
- Title: EDGI: Equivariant Diffusion for Planning with Embodied Agents
- Authors: Johann Brehmer, Joey Bose, Pim de Haan, Taco Cohen
- Abstract summary: Embodied agents operate in a structured world, often solving tasks with spatial, temporal, and permutation symmetries.
We introduce the Equivariant diffuser for Generating Interactions (EDGI), an algorithm for planning and model-based reinforcement learning.
EDGI is substantially more sample efficient and generalizes better across the symmetry group than non-equivariant models.
- Score: 17.931089055248062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Embodied agents operate in a structured world, often solving tasks with
spatial, temporal, and permutation symmetries. Most algorithms for planning and
model-based reinforcement learning (MBRL) do not take this rich geometric
structure into account, leading to sample inefficiency and poor generalization.
We introduce the Equivariant Diffuser for Generating Interactions (EDGI), an
algorithm for MBRL and planning that is equivariant with respect to the product
of the spatial symmetry group SE(3), the discrete-time translation group Z, and
the object permutation group Sn. EDGI follows the Diffuser framework (Janner et
al., 2022) in treating both learning a world model and planning in it as a
conditional generative modeling problem, training a diffusion model on an
offline trajectory dataset. We introduce a new SE(3)xZxSn-equivariant diffusion
model that supports multiple representations. We integrate this model in a
planning loop, where conditioning and classifier guidance let us softly break
the symmetry for specific tasks as needed. On object manipulation and
navigation tasks, EDGI is substantially more sample efficient and generalizes
better across the symmetry group than non-equivariant models.
Related papers
- Adaptive Transfer Clustering: A Unified Framework [2.3144964550307496]
We propose an adaptive transfer clustering (ATC) algorithm that automatically leverages the commonality in the presence of unknown discrepancy.
It applies to a broad class of statistical models including Gaussian mixture models, block models, and latent class models.
arXiv Detail & Related papers (2024-10-28T17:57:06Z) - Incorporating Arbitrary Matrix Group Equivariance into KANs [69.30866522377694]
Kolmogorov-Arnold Networks (KANs) have seen great success in scientific domains.
However, spline functions may not respect symmetry in tasks, which is crucial prior knowledge in machine learning.
We propose Equivariant Kolmogorov-Arnold Networks (EKAN) to broaden their applicability to more fields.
arXiv Detail & Related papers (2024-10-01T06:34:58Z) - Uniform Transformation: Refining Latent Representation in Variational Autoencoders [7.4316292428754105]
We introduce a novel adaptable three-stage Uniform Transformation (UT) module to address irregular latent distributions.
By reconfiguring irregular distributions into a uniform distribution in the latent space, our approach significantly enhances the disentanglement and interpretability of latent representations.
Empirical evaluations demonstrated the efficacy of our proposed UT module in improving disentanglement metrics across benchmark datasets.
arXiv Detail & Related papers (2024-07-02T21:46:23Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
We present an Equation/Variable free machine learning (EVFML) framework for the control of the collective dynamics of complex/multiscale systems.
The proposed implementation consists of three steps: (A) from high-dimensional agent-based simulations, machine learning (in particular, non-linear manifold learning (DMs))
We exploit the Equation-free approach to perform numerical bifurcation analysis of the emergent dynamics.
We design data-driven embedded wash-out controllers that drive the agent-based simulators to their intrinsic, imprecisely known, emergent open-loop unstable steady-states.
arXiv Detail & Related papers (2022-07-12T18:16:22Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z) - BasisVAE: Translation-invariant feature-level clustering with
Variational Autoencoders [9.51828574518325]
Variational Autoencoders (VAEs) provide a flexible and scalable framework for non-linear dimensionality reduction.
We show how a collapsed variational inference scheme leads to scalable and efficient inference for BasisVAE.
arXiv Detail & Related papers (2020-03-06T23:10:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.