論文の概要: Revisiting DeepFool: generalization and improvement
- arxiv url: http://arxiv.org/abs/2303.12481v1
- Date: Wed, 22 Mar 2023 11:49:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 14:24:48.393128
- Title: Revisiting DeepFool: generalization and improvement
- Title(参考訳): DeepFoolを再考する: 一般化と改善
- Authors: Alireza Abdollahpourrostam, Mahed Abroshan, Seyed-Mohsen
Moosavi-Dezfooli
- Abstract要約: 我々は,有効性と計算効率のバランスを崩す新たな敵攻撃群を導入する。
提案手法は,大規模モデルのロバスト性の評価にも適している。
- 参考スコア(独自算出の注目度): 17.714671419826715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have been known to be vulnerable to adversarial
examples, which are inputs that are modified slightly to fool the network into
making incorrect predictions. This has led to a significant amount of research
on evaluating the robustness of these networks against such perturbations. One
particularly important robustness metric is the robustness to minimal l2
adversarial perturbations. However, existing methods for evaluating this
robustness metric are either computationally expensive or not very accurate. In
this paper, we introduce a new family of adversarial attacks that strike a
balance between effectiveness and computational efficiency. Our proposed
attacks are generalizations of the well-known DeepFool (DF) attack, while they
remain simple to understand and implement. We demonstrate that our attacks
outperform existing methods in terms of both effectiveness and computational
efficiency. Our proposed attacks are also suitable for evaluating the
robustness of large models and can be used to perform adversarial training (AT)
to achieve state-of-the-art robustness to minimal l2 adversarial perturbations.
- Abstract(参考訳): 深層ニューラルネットワークは敵の例に弱いことが知られており、入力はわずかに修正され、ネットワークを騙して誤った予測をする。
これにより、このような摂動に対するネットワークのロバスト性を評価する研究が盛んに行われている。
特に重要なロバスト性指標は、最小のl2逆摂動に対するロバスト性である。
しかし、このロバスト性指標を評価する既存の手法は計算コストが高いか、あまり正確ではない。
本稿では,実効性と計算効率のバランスをとる新たな敵対的攻撃の一群を提案する。
提案する攻撃はdeepfool(df)攻撃の一般化であり,その理解と実装は容易である。
我々の攻撃は、有効性と計算効率の両方の観点から、既存の手法よりも優れていることを示す。
提案手法は, 大規模モデルの強靭性評価にも適しており, 対人訓練(AT)を行い, 対人摂動を最小限に抑えることができる。
関連論文リスト
- Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
大規模言語モデル(LLM)は、安全ガードレールをバイパスできる敵攻撃に対して脆弱である。
本稿では,2つの損失からなる高速対向訓練アルゴリズム(C-AdvUL)を提案する。
C-AdvIPOは、対向的に堅牢なアライメントのためのユーティリティデータを必要としない、対向型のIPOである。
論文 参考訳(メタデータ) (2024-05-24T14:20:09Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - How many perturbations break this model? Evaluating robustness beyond
adversarial accuracy [28.934863462633636]
入力点と摂動方向の制約の両方が与えられた摂動を成功させることがいかに困難であるかを定量化する。
空間性は、ニューラルネットワークに関する貴重な洞察を、複数の方法で提供することを示す。
論文 参考訳(メタデータ) (2022-07-08T21:25:17Z) - Masking Adversarial Damage: Finding Adversarial Saliency for Robust and
Sparse Network [33.18197518590706]
敵対的な例は、ディープニューラルネットワークの弱い信頼性と潜在的なセキュリティ問題を引き起こす。
本稿では, 対向的損失の2次情報を利用した新しい対向的プルーニング手法, Masking Adversarial damage (MAD)を提案する。
我々は,MADが敵の強靭性を損なうことなく敵の訓練網を効果的に突破し,従来の敵のプルーニング手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2022-04-06T11:28:06Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Exploring Misclassifications of Robust Neural Networks to Enhance
Adversarial Attacks [3.3248768737711045]
我々は、敵の攻撃に対して堅牢であるように訓練された19種類の最先端ニューラルネットワークの分類決定を分析する。
敵攻撃に対する新たな損失関数を提案し,攻撃成功率を継続的に改善する。
論文 参考訳(メタデータ) (2021-05-21T12:10:38Z) - Second Order Optimization for Adversarial Robustness and
Interpretability [6.700873164609009]
本稿では,2次近似による第1次及び第2次情報を対向損失に組み込んだ新しい正則化器を提案する。
正規化器における1つの繰り返しのみを用いることで、先行勾配や曲率正規化よりも強い強靭性が得られることが示されている。
それは、ネットワークが人間の知覚によく適合する機能を学ぶという、ATの興味深い側面を保っている。
論文 参考訳(メタデータ) (2020-09-10T15:05:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。