Coherently driven quantum features using a linear optics-based
polarization-basis control
- URL: http://arxiv.org/abs/2303.12628v1
- Date: Wed, 22 Mar 2023 15:09:14 GMT
- Title: Coherently driven quantum features using a linear optics-based
polarization-basis control
- Authors: B. S. Ham
- Abstract summary: Coherence approach has been applied to interpret quantum features such as the Hong-Ou-Mandel (HOM) effect.
A perfectly coherent analysis shows the same photon bunching of the paired coherent photons on a beam splitter.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum entanglement generation is generally known to be impossible by any
classical means. According to Poisson statistics, coherent photons are not
considered quantum particles due to the bunching phenomenon. Recently, a
coherence approach has been applied to interpret quantum features such as the
Hong-Ou-Mandel (HOM) effect, Franson-type nonlocal correlation, and
delayed-choice quantum eraser, where the quantum feature is due to
basis-product superposition at the cost of 50 % photon loss. For this, it has
been understood that a fixed sum-phase relation between paired photons is the
bedrock of quantum entanglement. Here, coherently driven quantum features of
the HOM effects are presented using linear optics-based polarization-basis
control. Like quantum operator-based destructive interference in the HOM
theory, a perfectly coherent analysis shows the same photon bunching of the
paired coherent photons on a beam splitter, whereas individual output
intensities are uniform.
Related papers
- How single-photon nonlinearity is quenched with multiple quantum
emitters: Quantum Zeno effect in collective interactions with $\Lambda$-level
atoms [49.1574468325115]
We show that the single-photon nonlinearity vanishes with the number of emitters.
The mechanism behind this behavior is the quantum Zeno effect, manifested in the slowdown of the photon-controlled dynamics.
arXiv Detail & Related papers (2024-01-13T06:55:18Z) - Phase-controlled coherent photons for the quantum correlations in a
delayed-choice quantum eraser scheme [0.0]
A coherence approach has been tried for the quantum eraser to unveil the quantum mystery.
A phase quantization of higher-order intensity products between coherently controlled quantum erasers is presented.
Theoretical solutions of both photonic-de-Broglie-wave-like quantum features and nonlocal quantum correlations are presented.
arXiv Detail & Related papers (2023-10-20T01:47:43Z) - Coherently induced quantum correlation in a delayed-choice scheme [0.0]
Quantum entanglement is a unique quantum feature that cannot be obtained by classical physics.
Here, a coherence manipulation is presented to excite polarization-path correlation using Poisson-distributed coherent photons.
As a result, the nonlocal quantum feature is now coherently understood in a deterministic way.
arXiv Detail & Related papers (2023-03-27T09:53:42Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Coherently excited nonlocal quantum features using
polarization-frequency correlation via a quantum eraser [0.0]
Indistinguishability is an essential concept to understanding mysterious quantum features in the view point of the wave-particle duality of quantum mechanics.
Here, a pure coherence approach is applied to the nonlocal correlation using coherent photons manipulated for polarization-frequency correlation.
The mysterious quantum feature of nonlocal correlation is now coherently understood and may open the door to macroscopic quantum information processing.
arXiv Detail & Related papers (2022-06-09T03:43:01Z) - The origin of indistinguishability of quantum features in an
interferometric system [0.0]
The origin of photon bunching on a beam splitter is in the indistinguishable characteristics between coincident photons.
A strong mutual phase dependency is the essential requirement for the nonclassical feature of photon bunching.
On behalf of a coherent model with a single input-port BS system, an extended scheme of a Mach-Zehnder interferometer is analyzed.
arXiv Detail & Related papers (2021-10-27T08:01:50Z) - Deterministic quantum correlation between coherently paired photons
acting on a beam splitter [0.0]
We study the quantum natures of paired photons acting on a beam splitter, where mutual coherence plays a major role.
Unlike current common understanding on anticorrelation, bipartite entanglement between paired photons does not have to be probabilistic or post-selected.
arXiv Detail & Related papers (2021-08-21T23:24:18Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.