Are LLMs the Master of All Trades? : Exploring Domain-Agnostic Reasoning
Skills of LLMs
- URL: http://arxiv.org/abs/2303.12810v1
- Date: Wed, 22 Mar 2023 22:53:44 GMT
- Title: Are LLMs the Master of All Trades? : Exploring Domain-Agnostic Reasoning
Skills of LLMs
- Authors: Shrivats Agrawal
- Abstract summary: This study aims to investigate the performance of large language models (LLMs) on different reasoning tasks.
My findings indicate that LLMs excel at analogical and moral reasoning, yet struggle to perform as proficiently on spatial reasoning tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The potential of large language models (LLMs) to reason like humans has been
a highly contested topic in Machine Learning communities. However, the
reasoning abilities of humans are multifaceted and can be seen in various
forms, including analogical, spatial and moral reasoning, among others. This
fact raises the question whether LLMs can perform equally well across all these
different domains. This research work aims to investigate the performance of
LLMs on different reasoning tasks by conducting experiments that directly use
or draw inspirations from existing datasets on analogical and spatial
reasoning. Additionally, to evaluate the ability of LLMs to reason like human,
their performance is evaluted on more open-ended, natural language questions.
My findings indicate that LLMs excel at analogical and moral reasoning, yet
struggle to perform as proficiently on spatial reasoning tasks. I believe these
experiments are crucial for informing the future development of LLMs,
particularly in contexts that require diverse reasoning proficiencies. By
shedding light on the reasoning abilities of LLMs, this study aims to push
forward our understanding of how they can better emulate the cognitive
abilities of humans.
Related papers
- A little less conversation, a little more action, please: Investigating the physical common-sense of LLMs in a 3D embodied environment [0.9188951403098383]
Large Language Models (LLMs) are increasingly used as reasoning engines in agentic systems.
We present the first embodied and cognitively meaningful evaluation of physical common-sense reasoning in LLMs.
We employ the Animal-AI environment, a simulated 3D virtual laboratory, to study physical common-sense reasoning in LLMs.
arXiv Detail & Related papers (2024-10-30T17:28:28Z) - Through the Theory of Mind's Eye: Reading Minds with Multimodal Video Large Language Models [52.894048516550065]
We develop a pipeline for multimodal ToM reasoning using video and text.
We also enable explicit ToM reasoning by retrieving key frames for answering a ToM question.
arXiv Detail & Related papers (2024-06-19T18:24:31Z) - Mind's Eye of LLMs: Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models [71.93366651585275]
Large language models (LLMs) have exhibited impressive performance in language comprehension and various reasoning tasks.
We propose Visualization-of-Thought (VoT) to elicit spatial reasoning of LLMs by visualizing their reasoning traces.
VoT significantly enhances the spatial reasoning abilities of LLMs.
arXiv Detail & Related papers (2024-04-04T17:45:08Z) - Can Language Models Recognize Convincing Arguments? [12.458437450959416]
Large language models (LLMs) have raised concerns about their potential to create and propagate convincing narratives.
We study their performance in detecting convincing arguments to gain insights into their persuasive capabilities.
arXiv Detail & Related papers (2024-03-31T17:38:33Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
This study investigates the capabilities and risks of Large Language Models (LLMs)
It uses the innovative parallels between the statistical patterns of word relationships within LLMs and Martin Heidegger's concepts of "ready-to-hand" and "present-at-hand"
Our findings reveal that while LLMs possess the capability for Direct Explicative Reasoning and Pseudo Rational Reasoning, they fall short in authentic rational reasoning and have no creative reasoning capabilities.
arXiv Detail & Related papers (2024-03-05T19:40:53Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Large Language Models: The Need for Nuance in Current Debates and a
Pragmatic Perspective on Understanding [1.3654846342364308]
Large Language Models (LLMs) are unparalleled in their ability to generate grammatically correct, fluent text.
This position paper critically assesses three points recurring in critiques of LLM capacities.
We outline a pragmatic perspective on the issue of real' understanding and intentionality in LLMs.
arXiv Detail & Related papers (2023-10-30T15:51:04Z) - Democratizing Reasoning Ability: Tailored Learning from Large Language
Model [97.4921006089966]
We propose a tailored learning approach to distill such reasoning ability to smaller LMs.
We exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm.
To exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes.
arXiv Detail & Related papers (2023-10-20T07:50:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.