Observation of non-Hermitian edge burst in quantum dynamics
- URL: http://arxiv.org/abs/2303.12831v1
- Date: Wed, 22 Mar 2023 18:00:02 GMT
- Title: Observation of non-Hermitian edge burst in quantum dynamics
- Authors: Lei Xiao, Wen-Tan Xue, Fei Song, Yu-Min Hu, Wei Yi, Zhong Wang and
Peng Xue
- Abstract summary: We experimentally observe a boundary-induced dynamical phenomenon known as the non-Hermitian edge burst.
In contrast to the eigenstate localization, the edge burst represents a generic non-Hermitian dynamical phenomenon that occurs in real time.
- Score: 4.836111090297333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The non-Hermitian skin effect, by which the eigenstates of Hamiltonian are
predominantly localized at the boundary, has revealed a strong sensitivity of
non-Hermitian systems to the boundary condition. Here we experimentally observe
a striking boundary-induced dynamical phenomenon known as the non-Hermitian
edge burst, which is characterized by a sharp boundary accumulation of loss in
non-Hermitian time evolutions. In contrast to the eigenstate localization, the
edge burst represents a generic non-Hermitian dynamical phenomenon that occurs
in real time. Our experiment, based on photonic quantum walks, not only
confirms the prediction of the phenomenon, but also unveils its complete
space-time dynamics. Our observation of edge burst paves the way for studying
the rich real-time dynamics in non-Hermitian topological systems.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Non-Hermitian glide-time symmetry [17.423012765773063]
We study a one-dimensional non-Hermitian system with glide-time reversal (GT) symmetry.
We discover that the GT symmetry leads to unique physical properties and enables rich dynamic phenomena in non-Hermitian systems.
Remarkably, we reveal the dynamic NHSEs that exhibit diverse behaviors across distinct dynamic phases.
arXiv Detail & Related papers (2024-09-20T10:16:42Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Non-Hermitian skin effect and self-acceleration [0.0]
Non-Hermitian systems exhibit nontrivial band topology and a strong sensitivity of the energy spectrum on the boundary conditions.
A macroscopic number of bulk states get squeezed toward the lattice edges under open boundary conditions, an effect dubbed the non-Hermitian skin effect (NHSE)
Here we unravel a different dynamical signature of the NHSE in real space that manifests itself in the em early-time dynamics of the system, namely self-acceleration of the wave function.
arXiv Detail & Related papers (2022-06-22T04:29:08Z) - Non-Hermitian Edge Burst [1.6033520575204165]
We unveil an unexpected non-Hermitian phenomenon, dubbed edge burst, in non-Hermitian quantum dynamics.
Our predictions are experimentally accessible in various non-Hermitian systems including quantum-optical and cold-atom platforms.
arXiv Detail & Related papers (2021-09-29T18:00:03Z) - Observation of non-Hermitian topological Anderson insulator in quantum
dynamics [8.119496606443793]
Disorder and non-Hermiticity dramatically impact the topological and localization properties of a quantum system.
We experimentally simulate the non-Hermitian topological Anderson insulator using disordered photonic quantum walks.
arXiv Detail & Related papers (2021-08-02T18:00:18Z) - Boundary Condition Independence of Non-Hermitian Hamiltonian Dynamics [7.660448224829509]
We study the evolution of wave-packets in non-Hermitian systems.
Surprisingly, we find that in the thermodynamical limit, the Green's function does not depend on boundary conditions.
arXiv Detail & Related papers (2021-04-20T11:12:03Z) - Dynamical robustness of topological end states in nonreciprocal
Su-Schrieffer-Heeger models with open boundary conditions [0.41998444721319217]
We study the dynamics of an initial end state in nonreciprocal Su-Schrieffer-Heeger models under open boundary conditions.
We find that it is dynamically more robust than its Hermitian counterpart, because the non-Hermitian skin effect can suppress the part leaking to the bulk sites.
arXiv Detail & Related papers (2020-08-28T06:07:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.