Exploring Visual Prompts for Whole Slide Image Classification with
Multiple Instance Learning
- URL: http://arxiv.org/abs/2303.13122v1
- Date: Thu, 23 Mar 2023 09:23:52 GMT
- Title: Exploring Visual Prompts for Whole Slide Image Classification with
Multiple Instance Learning
- Authors: Yi Lin, Zhongchen Zhao, Zhengjie ZHU, Lisheng Wang, Kwang-Ting Cheng,
Hao Chen
- Abstract summary: We present a novel, simple yet effective method for learning domain-specific knowledge transformation from pre-trained models to histopathology images.
Our approach entails using a prompt component to assist the pre-trained model in discerning differences between the pre-trained dataset and the target histopathology dataset.
- Score: 25.124855361054763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiple instance learning (MIL) has emerged as a popular method for
classifying histopathology whole slide images (WSIs). However, existing
approaches typically rely on pre-trained models from large natural image
datasets, such as ImageNet, to generate instance features, which can be
sub-optimal due to the significant differences between natural images and
histopathology images that lead to a domain shift. In this paper, we present a
novel, simple yet effective method for learning domain-specific knowledge
transformation from pre-trained models to histopathology images. Our approach
entails using a prompt component to assist the pre-trained model in discerning
differences between the pre-trained dataset and the target histopathology
dataset, resulting in improved performance of MIL models. We validate our
method on two publicly available datasets, Camelyon16 and TCGA-NSCLC. Extensive
experimental results demonstrate the significant performance improvement of our
method for different MIL models and backbones. Upon publication of this paper,
we will release the source code for our method.
Related papers
- Foundation Models for Slide-level Cancer Subtyping in Digital Pathology [1.7641392161755438]
This work aims to compare the performance of various feature extractors developed under different pretraining strategies for cancer subtyping on WSI under a MIL framework.
Results demonstrate the ability of foundation models to surpass ImageNet-pretrained models for the prediction of six skin cancer subtypes.
arXiv Detail & Related papers (2024-10-21T11:04:58Z) - A Simple Approach to Unifying Diffusion-based Conditional Generation [63.389616350290595]
We introduce a simple, unified framework to handle diverse conditional generation tasks.
Our approach enables versatile capabilities via different inference-time sampling schemes.
Our model supports additional capabilities like non-spatially aligned and coarse conditioning.
arXiv Detail & Related papers (2024-10-15T09:41:43Z) - Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
A prevalent strategy to bolster image classification performance is through augmenting the training set with synthetic images generated by T2I models.
In this study, we scrutinize the shortcomings of both current generative and conventional data augmentation techniques.
We introduce an innovative inter-class data augmentation method known as Diff-Mix, which enriches the dataset by performing image translations between classes.
arXiv Detail & Related papers (2024-03-28T17:23:45Z) - Prompt-Guided Adaptive Model Transformation for Whole Slide Image Classification [27.21493446754789]
Multiple instance learning (MIL) has emerged as a popular method for classifying histopathology whole slide images (WSIs)
We propose Prompt-guided Adaptive Model Transformation framework that seamlessly adapts pre-trained models to the specific characteristics of histopathology data.
We rigorously evaluate our approach on two datasets, Camelyon16 and TCGA-NSCLC, showcasing substantial improvements across various MIL models.
arXiv Detail & Related papers (2024-03-19T08:23:12Z) - Heterogeneous Generative Knowledge Distillation with Masked Image
Modeling [33.95780732124864]
Masked image modeling (MIM) methods achieve great success in various visual tasks but remain largely unexplored in knowledge distillation for heterogeneous deep models.
We develop the first Heterogeneous Generative Knowledge Distillation (H-GKD) based on MIM, which can efficiently transfer knowledge from large Transformer models to small CNN-based models in a generative self-supervised fashion.
Our method is a simple yet effective learning paradigm to learn the visual representation and distribution of data from heterogeneous teacher models.
arXiv Detail & Related papers (2023-09-18T08:30:55Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Meta Internal Learning [88.68276505511922]
Internal learning for single-image generation is a framework, where a generator is trained to produce novel images based on a single image.
We propose a meta-learning approach that enables training over a collection of images, in order to model the internal statistics of the sample image more effectively.
Our results show that the models obtained are as suitable as single-image GANs for many common image applications.
arXiv Detail & Related papers (2021-10-06T16:27:38Z) - Unlabeled Data Guided Semi-supervised Histopathology Image Segmentation [34.45302976822067]
Semi-supervised learning (SSL) based on generative methods has been proven to be effective in utilizing diverse image characteristics.
We propose a new data guided generative method for histopathology image segmentation by leveraging the unlabeled data distributions.
Our method is evaluated on glands and nuclei datasets.
arXiv Detail & Related papers (2020-12-17T02:54:19Z) - FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning [64.32306537419498]
We propose a novel learned feature-based refinement and augmentation method that produces a varied set of complex transformations.
These transformations also use information from both within-class and across-class representations that we extract through clustering.
We demonstrate that our method is comparable to current state of art for smaller datasets while being able to scale up to larger datasets.
arXiv Detail & Related papers (2020-07-16T17:55:31Z) - Multi-task pre-training of deep neural networks for digital pathology [8.74883469030132]
We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images.
We show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance.
arXiv Detail & Related papers (2020-05-05T08:50:17Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.